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Abstract—This paper studies the occupancy and movement 
prediction of residents in the smart home based on a 
compression-based sequential prediction approach and 
discusses home automation applications that can benefit from 
such predictions. The prediction approach studied here is based 
on the Active LeZi algorithm, which is a compression-based 
approach and uses an order-k Markov model. The effects of the 
order of the memory in the Markov model on the prediction 
accuracy have been investigated and it has been suggested that 
limiting the memory of the Markov chain model in the Active 
LeZi algorithm can improve the performance of the prediction. 
Moreover, the effects of the interrupted patterns and the 
temporal information of the patterns have been added to this 
prediction model. A small-scale smart home testbed using 
motion detector sensors and a central microcontroller based on 
Arduino technology along with synthesized data have been used 
to study the performance of the prediction models. 
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I. INTRODUCTION 
The intelligence built into the smart homes through the large 

deployment of sensing, computing and communication elements 
along with pattern recognition, prediction and adaptive control 
algorithms introduce new opportunities for better smart home 
solutions. In particular, by collecting information about residents’ 
activity pattern, resource utilization behavior, comfort level, state 
of online and stored resources, many researchers have focused on 
developing activity pattern recognition and prediction 
techniques, which can enable adaptive algorithms to respond to 
the dynamic residents’ demands.  

In this paper, we study the occupancy and movement 
prediction of residents in the smart home based on a sequential 
prediction approach using the Active LeZi algorithm [1]. The 
Active LeZi algorithm is founded on an information theoretic 
approach and a data compression algorithm, which uses an order-
k Markov model. This algorithm has been introduced in 
MavHome project [1] and has been used for mobility prediction 
in smart home applications. We have specifically evaluated the 
effects of the order of the memory in the Markov model on the 
prediction accuracy in this algorithm. Based on this study, we will 
discuss that limiting the memory of the Markov model in the 
Active LeZi algorithm can improve the performance of the 
prediction. In addition, the effects of the interrupted patterns and 
the temporal information of the patterns have been added to the 

prediction model. Considering interrupted patterns is specifically 
important since such patterns are common in smart home 
applications. Moreover, the inhabitants in a smart home tend to 
repeat certain patterns or activities throughout the day and the 
likelihood of activities changes depending on the time of the day. 
Capturing the temporal information of the observed patterns in 
the prediction model enhances the performance of the prediction 
and provide more accurate and time-aware predictions. 

In our studies, we use a small-scale smart home testbed using 
motion detector sensors and a central microcontroller based on 
Arduino technology along with simulations to evaluate the 
performance of the prediction algorithms. The small-scale testbed 
allows us to collect movement data faster and in a supervised 
manner and serves as an education platform for students to 
experiment and study smart home technologies. Finally, we 
discuss smart home applications and services such as energy 
management and home automation that can benefit from the 
predictions provided by the models under study.  

The rest of the paper is organized as following. In Section II, 
we present a review of smart home application areas and 
prediction models that enable such applications. We also briefly 
review existing smart home projects. Section III, briefly reviews 
the Active LeZi algorithm with examples. The proposed studies 
and extensions on Active LeZi have been discussed in Section IV. 
The overview of the testbed and the experimental results for the 
proposed studies and extensions are presented in Section V. 
Section VI describes examples of smart home applications that 
can benefit from the sequential prediction models. Finally our 
conclusions are presented in Section VII.   

II. RELATED WORK 
In this section, we review related work to the current paper in 

two main categories: (1) occupancy and activity prediction, and 
(2) smart home applications and adaptive algorithms. 

A. Occupancy, Mobility and Activity Prediction 

The occupancy, mobility and activity prediction for smart 
home applications have been extensively studied in the literature 
in the past decade. Here, we briefly review examples of such 
efforts.  

The classification-based techniques for activity prediction in 
smart homes have been studied for instance in [2, 3, 4]. 
Specifically, in [2] an approach based on neural networks, in [3] 
a decision tree classifier and in [4] an approach based on support 
vector machines have been used for activity prediction in smart 
homes.  



Another category of approaches for activity prediction are 
based on sequential prediction models. An example of such 
model is, the hidden Markov Model (HMM), which has been 
studied in [5, 6, 7] for activity recognition and prediction in smart 
homes. In general, HMM provides flexible structure to model 
complex sequential data for prediction purposes; however, 
successful training of HMM model requires large datasets [8]. 

 The approaches that are closely related to this paper are the 
sequential prediction models, which are based on compression 
algorithms. Hence, we will discuss such models in more details 
next. Lossless compression algorithms along with prediction by 
pattern matching (PPM) family algorithms [9] have been used for 
prediction purposes in the past. Specifically, LZ78 (Lempel-Ziv 
compression algorithm) [10] is one of the most popular lossless 
compression algorithms, which is also used as the basis for many 
commercial applications of compression, that has been used as 
the basis of some prediction algorithms. This algorithm is a 
dictionary-based algorithm, which parses a string sequence of 
events into substrings that form the set of phrases used for 
compression. One of the approaches based on LZ78 is LeZi 
Update algorithm [11], which keeps track of all possible contexts 
within a given phrase of input symbols while parsing the 
sequence. However, it does not consider the information lost 
across phrase boundaries, and have a low convergence rate. LeZi 
Update algorithm was first proposed for mobility tracking in 
wireless networks. In another approach called Active LeZi 
algorithm [1], a sliding window concept has been introduced to 
address the issue of slow convergence with the prediction 
algorithms based on the original LZ78 and LeZi Update.  Active 
LeZi algorithm [1] builds an order-k Markov model and uses a 
sliding window, where the size of window is the size of longest 
phrase seen so far. This window is also used to capture 
information lost on the phrase boundaries. Other variants of 
Active LeZi have also been proposed, for example, SPEED 
algorithm in [12]. The study in this paper is focused on Active 
LeZi algorithm and thus we discuss this algorithm in detail later 
in this paper. 

B.  Smart Home Application Areas 

Here, we briefly review some smart-home application areas 
including resource management and automation, security and 
health-care applications. 

Resource management applications and home automation are 
mainly concerned about automation and management of critical 
resources in the smart home. Specifically, key resources in smart 
home environments include energy (e.g., electricity, gas) and 
water. Efficient management of such resources are essential for 
making more sustainable and cost efficient smart homes [13]. 
Analyzing resource demands of the residents, predicting demands 
and proposing new algorithms for improving the resource 
utilization in the smart homes are examples of research problems 
related to this application. Examples of such research efforts are 
automation and optimization of the heating/cooling systems [14], 
lighting systems [15], automation and optimization of water 
resources [16] for smart homes. Other examples include 
managing deployed renewable energy resources (solar and 
storage energy resources) [17, 18] to help reducing the energy 
cost of smart homes and incorporating weather prediction in 
resource management of smart homes [19]. 

Security is another important service that the smart home can 
offer to its residents [20], while privacy is an issue closely related 

to the security and has been studied in several research efforts 
(e.g., [21, 22, 23]).  

Health-care and elderly-care are other important examples of 
smart home services that have been studied extensively, for 
example, in [24, 25, 26]. Detecting falls, health monitoring and 
directed medication are a few examples of health-care and 
elderly-care services.  

All these application areas rely on activity and occupancy 
prediction of residents to effectively respond to their demands. 

III. PREDICTION MODEL BASED ON ACTIVE LEZI 
In this section, we review the Active LeZi algorithm. The idea 

of this approach (and generally LZ78 based approaches) is to 
break up the sequence of symbols (recorded sequence of activities 
in time) and build a trie, which allows calculation of the 
probability of next symbols (activity) based on the information 
(i.e., the frequency of symbols) stored in the trie. The pseudocode 
of Active LeZi, as was originally presented in [1], is shown in 
Figure . This algorithm builds and updates a trie based on the 
input symbols with their respective frequencies as shown in 
Figure . The depth of the trie at each time will be the maximum 
length of phrases that are parsed until that time. After the trie is 
built, the window consisting of the last phrase is used to generate 
prediction of the symbol that is most likely to occur. We explain 
the algorithm with an example. 

Consider the sequence of input symbols 
‘aaddabddbccbdddbcccbaaaddbaaabcccbaad’. The algorithm 
yields a dictionary with contexts according to the trie shown in 
Fig. 2 and built using the above algorithm. 

The Active LeZi algorithm forms an order-k Markov model, 
where k is the length of longest phrase seen so far. The Active 
LeZi algorithm includes more information about the contexts in 

Figure 2: Trie formed by Active LeZi parsing of the sequence 
'aaddabddbccbdddbcccbaaaddbaaabcccbaad' 

Figure 1: Active LeZi pseudo code, adopted from [1]. 



the sequence compared to LZ78 due to considering the order-k 
memory in the model using the sliding window. 

For an example on calculating the likelihood of various 
symbols, consider the end of the training sequence above, i.e., 
‘aad’, which is also the window to be used for predicting the next 
symbol. We use the suffixes of this window to calculate 
probabilities of the next symbol (i.e., the possible contexts to be 
considered are ‘ad’, ‘a’ and ‘null’). A prediction by pattern 
matching (PPM) algorithm is then used to calculate probabilities 
[12] as following. The algorithm calculates probability of a 
phrase by successively reducing the length of the phrase and 
measures the probability distribution according to the length of 
the phrase and the relative weights (frequency) of events stored 
in the trie. The equation for calculating the probability is as 
following: 

𝑃𝑃𝑘𝑘(𝜑𝜑) = 𝑝𝑝𝑘𝑘(𝜑𝜑) + 𝑒𝑒𝑘𝑘(𝜑𝜑).𝑃𝑃𝑘𝑘−1(𝜑𝜑),  (1) 

where φ is the symbol to predict its probability of occurrence, 
Pk(φ) is the final probability of the symbol, pk(φ) is the probability 
of seeing the symbol after the phrase of length k, ek(φ) is the 
escape probability of symbol φ. The probability of escaping to 
lower levels is the probability of having ‘null’ at that level.  This 
equation allows us to recursively calculate the probability of 
symbols as we move toward lower order contexts in the trie. 
Suppose we want to estimate the probability of occurrence of 
event ‘b’ after the training sequence seeing above. We start from 
the highest order, which is ‘ad’ in this example. In the trie, we 
can see that ‘b’ does not occur after context ‘ad’. Therefore, the 
probability of ‘b’ at this level is 0/3. Next, we calculate the 
probability of ‘b’ occurring after the context ‘d’, by escaping to 
the lower level with a probability of 2/3. At this level, ‘b’ appears 
two times out of twelve times that ‘a’ appears. Thus, the 
probability of ‘b’ occurring after context ‘a’ is 2/12. The 
probability of null phrase appears two times out of twelve times 
that ‘a’ appears. Thus, after escaping to the lower level with a 
probability of 2/12, ‘b’ appears eight times out of thirty-eight 
possible phrases. Thus, we have a probability of 8/38 for the 
latter. The blended probability of the occurrence of the phrase ‘b’ 
according to recursive use of equation (1) is thus 

0
3

+ 2
3
� 2
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12
� 8
38
�� = 0.1345. 

As the phrase is made up of only one symbol, the whole 
probability is assigned to it. If it has more symbols, the 
probability is distributed according to their relative frequencies. 

IV. STUDIES AND EXTENSIONS ON ACTIVE LEZI 
ALGORITHM 

In this section, we introduce the studies and extensions 
proposed on the Active LeZi algorithm to improve the prediction 
accuracy. 

A. Active Lezi with Constrained Memory  

Active LeZi algorithm is an incremental sequential parsing 
algorithm that uses Markov property to predict the next symbol. 
In this paper, we study the impact of memory in the Markov 
model on the accuracy of the Active LeZi algorithm. As shown 
in Section III, the Active LeZi algorithm considers a variable-
length sliding window that can capture information across phrase 
boundaries and builds an order-k Markov model, which lead to 
converging faster to better predictability. In Active LeZi 
algorithm, as the sequence grows over time, the patterns recorded 
get larger and thus, the window size increases. According to the 

Markov property, the probability of the present event depends 
only on the immediate previous event. However, in this 
algorithm, as the window grows larger, it includes more history 
and memory in the model, thus, it starts to lose the Markov 
property and thus the prediction accuracy decreases. As such, we 
propose limiting the growing size of the sliding window in the 
Active LeZi algorithm to prevent large memory in the model. We 
specifically define a window-size threshold above which we reset 
the window size to zero. This approach will reduce the depth of 
the trie, i.e., the length of patterns, and increase the breadth of the 
tree, i.e., the tree will contain more patterns. In Section V, we 
illustrate the effect of memory on the prediction performance. We 
have identified the window-size threshold that lead to better 
predictions for the Active LeZi algorithm using extensive 
experiments. 

B. Capturing Interrupted Patterns 

To better model real-world inhabitants’ behavior, we need to 
consider patterns that imitate natural inhabitant behavior, for 
example, interruptions in a pattern. For example, consider the 
event sequence where an inhabitant moves from the bedroom 
(‘a’) to the kitchen (‘b’), and then to the living room (‘c’) in a 
typical daily activity, recording a pattern of ‘abc’. On a particular 
day, the inhabitant might forget to, for example, take an item from 
the bedroom and realizes it after going to the kitchen. He goes 
back to the bedroom and then continues his typical sequence. This 
records a new pattern ‘abac’. In reality, this is the same old 
pattern and can happen often due to the natural human behavior, 
thus, it is important to count it also toward the ‘abc’ context. We 
capture such behavior by considering interrupted patterns within 
a pattern that has been recorded previously. For example, in the 
pattern ‘abac’, this approach considers patterns including ‘aac’, 
‘abc’, and ‘aba’, and check if any of these patterns are already 
exist or has been recorded before. If the pattern exists then the 
algorithm increases the frequency of the pattern. In this case, this 
approach increases the frequency of the pattern ‘abc’ and also 
records the new pattern ‘abac’. Thus, the existing patterns are 
recognized and new patterns are added to the trie, which 
eventually helps in better predictions. We show the improvement 
of prediction for this extension in Section V. 

C. Time-aware Prediction 

Residents tend to perform certain patterns depending on the 
time of the day, for example, cooking. These events may also be 
repeated during the day but the events that succeed these 
activities may vary depending on the time of the day. For 
example, the inhabitant might study after breakfast and sleep after 
dinner. Therefore, the prediction of events should also depend on 
the time of the day. However, the existing Active LeZi algorithm 
does not consider time of the events. 

We propose an approach for capturing the temporal 
information of events in the model and name it “Time-aware 
Active LeZi algorithm”. This is done by pairing the frequency 
attribute (termed the total frequency) with a frequency vector of 
the form [ft1, f(t1, t2), ft2, f(t2, t3), ft3 …] for every symbol in the trie, 
where ft1 is the frequency of the symbol at time period t1, and 
f(t1,t2) is the frequency of the symbol at the boundary of the time 
intervals t1 and t2. These frequencies in the frequency vector, 
along with the total frequency are updated when the trie is being 
built. The frequency element in the frequency vector to be 
updated is determined by the time period in the window. Consider 
this example for demonstration. The input sequence along with 



their respective time periods is of the form 
‘a(M)a(M)b(M)c(M)a(A)d(A)a(A)b(A)c(E)d(E)b(E)a(E)b(N)c(N
)b(N)d(N)’, where M stands for morning, A for afternoon, E for 
evening, and N for night. Thus, the frequency vector is of the form 
[fm, f(m, a), fa, f(a, e), fe, f(e, n), fn, f(n, m)]. Consider a case where the 
window has symbols a(M)a(M)b(M). As all the symbols are in 
the time period M, the frequency count of element fm in the 
frequency vector is incremented for each symbol in the window. 
Consider another case where the window has symbols 
c(M)a(A)d(A). The window includes symbols of various time 
periods and therefore, it is on the boundary of M and A. Thus, the 
frequency count of the element f(m,a) in the frequency vector is 
incremented for each symbol in the window. This approach is 
continued for all symbols in the input stream to build the trie with 
additional time frequency information. The boundaries enables us 
to capture the events that potentially belong to either or both of 
the time intervals.  

To calculate the probabilities based on the trie, note that the 
next symbol should be occurring in the same time period as the 
last observed symbol or in the succeeding time period. Thus, the 
equation to calculate the probability of a phrase will be  

𝑃𝑃𝑘𝑘(𝜑𝜑) = ∑ (𝑝𝑝𝑘𝑘(𝜑𝜑))𝑖𝑖𝑖𝑖=𝑢𝑢,𝑣𝑣 + ∑ 𝑒𝑒𝑘𝑘 (𝜑𝜑). (𝑝𝑝𝑘𝑘−1(𝜑𝜑))𝑖𝑖𝑖𝑖=𝑢𝑢,𝑣𝑣  ,     (2) 
where u is the current time period, v is the succeeding time 

period, (pk(𝜑𝜑))i is the probability of seeing the symbol after the 
phrase of length k in the time period i.  Hence, the new probability 
includes the frequency of a symbol in time period u (the same 
time period), and in time period v (the succeeding time period). 
For example, consider the case when the window is 
a(M)a(M)b(M). The subsequent symbol can be either in time 
period M or A due to the order of the time periods in a day. Thus, 
after reading the new symbol (for example, say ‘x’), the window 
might be a(M)b(M)x(M) or a(M)b(M)x(A). To include both of 
these possibilities, the probability of the symbol pk(𝜑𝜑) should be 
the sum of probabilities at time periods u=tm, and v=t(m, a).  

In order to use the probability values from both of the total 
trie as well as time-aware frequencies, we propose a weighted 
average of the two using a control parameter ‘α’ as following 

(𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢𝑟𝑟𝑟𝑟)𝑖𝑖 =  𝛼𝛼 . (𝑃𝑃)𝑖𝑖 + (1 − 𝛼𝛼) . (𝑃𝑃𝑟𝑟)𝑖𝑖,                    (3) 
where i = a, b,…., are the unique symbols in the training 
sequence, (Presult)i is the total probability of the symbol ‘i’, ‘α’ is 
the weight parameter, (P)i is the probability of the symbol ‘i’ 
obtained using the total trie from Active LeZi algorithm, and (Pt)i 
is the probability of the symbol ‘i’ obtained from the time-aware 
frequency information. We show the results of our experiment for 
the proposed algorithm in Section V. 

D. Complexity Analysis of the Prediction Model 
Here, we briefly discuss the complexity of the Active LeZi 

with constrained memory as well as the algorithm with 
interrupted pattern. The analysis is the simple extension of the 
Active LeZi complexity analysis as presented in [1]. The worst 
possible training sequence for Active LeZi rapidly increases the 
phrase length so that new nodes are added to the trie. As 
suggested in [1], such a sequence can be represented by S = x1 
x1x2 x1x2x3 x1x2x3….xk, where the length of the sequence is n = 
k(k+1)/2. Similarly, in our proposed extension for Active LeZi 
algorithm with fixed window size, this sequence can be 
represented as S = x1 x1x2 x1x2x3 x1x2x3….xm x2x3….xm+1 
x3….xm+2… where m is the maximum allowed phrase length to 
limit the order of the memory of the Markov chain model. The 
length of this sequence is n = m(m+1)/2 + r.m, where r captures 
the effect of sliding window on the remaining data points after 

reaching the maximum window size and grows with the size of 
input, n. In the worst case, each phrase adds a new node to the 
trie. Creating a new node or updating the frequency of an existing 
node requires parsing of the phrase, which depends on patterns or 
phrases found in the sequence. Thus, the time complexity based 
on the number of contexts added per window and number of 
sliding windows will be O(m2) + O(n.m), which for a fixed small 
window size leads to the time complexity of O(n).  

Next, we analyze the time complexity of the algorithm with 
the extension that considers interrupted patterns but not fixed 
window size in the Active LeZi algorithm. As discussed in the 
earlier section, existing patterns in the window are recognized 
only if they have minor interruptions (one symbol difference). In 
the worst case scenario, k patterns can be recognized, where k is 
the length of the window. So, the trie parses O(k2) nodes while 
creating new nodes or if it found an existing context then it will 
update the frequency of existing nodes. Therefore, the number of 
nodes parsed in the trie by the time the model attains order k is 
O(k3) and the number of nodes parsed in the trie while 
recognizing interrupted patterns is O(k4) = O(n4/2) because k = 
O(√𝑛𝑛) and thus the time complexity of the algorithm with the 
interrupted patterns is O(n2). Note that the time complexity for 
interrupted patterns and fixed window size is simply the 
complexity of the constrained memory approach with a scalar 
coefficient and thus is O(n) as we have m extra operation per 
window, i.e., O(m3) + O(n.m2).  Based on similar analysis, the 
time complexity of the time-aware Active LeZi is the same as the 
original Active LeZi and due to space limitations, we are not 
discussing it here. 

V. EXPERIMENTS AND RESULTS 
In this section, we present our experiment results for the 

discussed algorithms. The prediction accuracy rate in these 
experiments is computed as following: 
𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑎𝑎𝑝𝑝𝑝𝑝 % =  𝑛𝑛𝑛𝑛.  𝑛𝑛𝑜𝑜 ℎ𝑖𝑖𝑟𝑟𝑟𝑟

(𝑛𝑛𝑛𝑛.  𝑛𝑛𝑜𝑜 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑟𝑟𝑟𝑟 𝑖𝑖𝑛𝑛 𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡 𝑟𝑟𝑟𝑟𝑠𝑠𝑢𝑢𝑟𝑟𝑛𝑛𝑠𝑠𝑟𝑟)  
× 100,   (4)           

where, a hit is counted when the symbol predicted by the 
prediction model is the same as the symbol that occurs next in the 
sequence, indicating that the prediction model predicted the next 
symbol correctly. Here, we start by reviewing the smart home 
testbed and the dataset used for these experiments and then 
present the results. 

A. Smart Home Testbed and Data Collection 

Many research teams have developed smart home models to 
learn, and study various aspects of smart homes. Examples of the 
academic smart-home testbeds are Adaptive House [27], 
MavHome [28], GatorTech Smart House [29], Aware Home [30]. 
In contrast to these testbeds, in this research, we implemented a 
small-scale, smart-home testbed using Arduino microcontroller 
board [31] and sensors for collecting occupancy information. The 
architecture of this testbed consist of the following layers. The 

Figure 3: Floor plan and sensor layout 



‘Action layer’ suggests actions for the smart home based on the 
information received from the layers below. This layer will be 
discussed in Section VI. The ‘Knowledge layer’ gathers and 
stores information on inhabitant’s occupancy and movement 
pattern and then uses this information to generate predictions 
based on the prediction algorithms. The ‘Communication layer’ 
is responsible to collect data from the physical layer and send 
control signals to the physical layer. The ‘Physical layer’ consists 
of sensors to sense the occupancy and movement patterns, 
actuators to implement actions and the Arduino microcontroller 
to coordinate and orchestrate the physical layer by managing the 
operations of sending and receiving data from these devices.  

The layout of the smart-home testbed is illustrated in Error! 
Reference source not found.3. The smart home consists of three 
rooms and each room has a door, which enables us to supervise 
the movement of the inhabitant. We use a micro robotic creature 
called Hexbug Nano [32] to simulate inhabitants. It is powered 
by a tiny motor and has angular legs that allows it to navigate on 
a hard surface. 

For the purpose of evaluating the performance of the proposed 
approach in addition to the data collected from the test-bed, we 
generate a simulated dataset. This is done by pre-defining 
patterns with varying temporal information on day-to-day basis 
by using a range of randomness defined for each symbol. For 
example, consider the pattern ‘abbcddabc’ that replicates a 
realistic inhabitant pattern with each symbol representing a 
location in the home (e.g., specific room in the house). To 
indicate the inhabitant occupancy in a room for a certain duration 
of time, each symbol can have a range of duration, for example, 
‘a(1-3)b(2-5)’ meaning that the resident may stay in room ‘a’ for 
1 to 3 time slot duration and in room ‘b’ for 2 to 5 time slot 
duration. The algorithm generates random patterns based on the 
duration range associated with each symbol as well as small 
random variations in the order of symbols. 

B. Performance of Active LeZi with Constrained Window Size 
In this section, we compare the prediction accuracy of the 

Active LeZi algorithm with fixed (constrained) window length 
with the original Active LeZi algorithm. These experiments are 
performed on a synthesized training data of 850 symbols. Figure 
4 shows the aggregate prediction accuracy percentage after every 
50 symbols of data as well as a plot for ‘regular window (12)’, 
which is the regular window size when there are no restrictions 
on the length of the window for the Active LeZi algorithm. We 
observed that the Active LeZi algorithm with fixed maximum 
window size performs better than the Active LeZi algorithm. 

This indicates that the model starts to lose the Markov 
property when the history grows large. In other words, small 
additional memory helps in prediction but if the memory gets too 
large then it reduces the prediction accuracy. Figures 5 and 6 
show the results of the fixed window size for different number of 
symbols in the training set. Based on these result, we conjecture 
that when the length of window is restricted to a smaller value, 
which is close to the number of unique symbols in the training 
dataset, then the algorithm performs better.  

C. Performance of Active LeZi with Interrupted Patterns 
Here, we compare the prediction accuracy of the Active LeZi 

algorithm extended by interrupted patterns with Active LeZi 
algorithm and LeZi Update algorithm. These experiments are 
performed on a synthesized training data of 850 symbols. We 
observed that the extended Active LeZi algorithm performs better 
than the other algorithms by considering interrupted patterns. 
Figure 7 shows the plots when the aggregate prediction accuracy 
percentage is plotted after every 50 symbols of data.  

 

Figure 4: Comparison of Active LeZi algorithm with extended model of various 
window sizes (aggregated values after every 50 symbols) 

Figure 6: Comparison of prediction accuracy of samples with varying 
number of unique symbols when the sliding window has a fixed size of 
7 (aggregated values after every 50 symbols) 

Figure 7: Comparison of prediction algorithms (aggregated values 
after every 50 symbols) 

Figure 5: Comparison of prediction accuracy of samples with varying 
number of unique symbols when the sliding window has a fixed size of 6 
(aggregated values after every 50 symbols) 



D. Performance of Time-Aware Active LeZi Algorithm 
In the earlier sections, we have seen that the Active LeZi 

algorithm performed better when the maximum size of the 
window is restricted to retain the Markov property. Thus, we now 
compare the performance of the Active LeZi algorithm with 
restricted window size against the Time-aware Active LeZi 
algorithm with restricted window size. Figure 8 shows the plots 
where the aggregate prediction accuracy percentage is plotted 
after every 20 symbols of data. We can notice the increase in 
prediction accuracy as the training sequence grows over time. 

Time-aware Active LeZi calculates the probability of the next 
symbol based only on the occurrences in the respective time 
periods. Thus, even though it has a smaller training sequence in 
relative time slots, it performed better than the Active LeZi 
algorithm. The Time-aware Active LeZi algorithm generates the 
parse trie using the basis of the Active LeZi algorithm. It performs 
better when considering the frequency of the symbols at the 
appropriate time periods, as seen above. In an effort to 
experimentally evaluate the importance of the parameter ‘α’, we 
consider 3 cases: when ‘α’ has values 0, 0.5, and 1. In Figure 8, 
we see that the approach with α = 0 performs better than the rest 
and the Time-aware Active LeZi algorithm performs better by 
itself. This is mainly due to the repeated patterns designed for our 
scenarios associated with each time interval. By repeating similar 
patterns between different time intervals, then the combination of 
the total frequency and time-aware frequency will lead to better 
prediction performance. 

E. Performance Evaluation Based on Testbed Data 
In this section, we evaluate the performance of the Active 

LeZi algorithm, the Active LeZi algorithm with a fixed maximum 
length window, and Time-aware Active LeZi algorithm. Unlike 
the earlier tests, the data are collected from the testbed and 
contains 960 symbols representing a time span of 15 days, where 
each day has around 65 symbols and each time period has around 
15 symbols. Figure 9 shows the plots where the aggregate 
prediction accuracy percentage is plotted after every 20 symbols 
of data. We notice that the time-aware Active LeZi algorithm 
performs better than the rest of the algorithms as the training 
sequence grows over time.    

VI. APPLICATIONS OF PREDICTIONS 
Sequential prediction algorithms in the area of smart homes 

are suitable for applications such as energy efficiency and 

automation as well as security and health-care. We briefly 
introduce these application in this section. 

A. Energy System Automation 
The prediction model can be used to predict the future 

occupancy of the inhabitant, which can help in preheating/cooling 
the predicted areas of the smart home to maintain the comfort 
level temperature of the residents while avoiding wasting energy 
for the times that the inhabitants are not present. Such systems 
usually maintain the temperature at a certain set point to avoid 
delay in adjusting the temperature while saving energy. For 
example, in this paper, we consider the data set in Fig. 10 as the 
occupancy observed and the functioning of zone-wise systems 
[33] to control the conditions as in Figure 11.  

In this example, when the system predicts the symbol b(A) 
after c(M), it starts to preheat the room b so that the room is 
adjusted to a comfortable temperature before the inhabitant 
occupies the room. In ideal cases, when all the predictions are 
accurate, this application can be extended to automation of 
lighting systems and appliances like coffee machine, 
entertainment systems, etc. 

Figure 10: Sample data with respect to time periods 

Figure 8: Comparison of prediction accuracy of Time-aware Active LeZi with 
various α values (aggregated values after every 20 symbols) 

Figure 11: The working of zone-wise systems to control temperature is 
explained as rise and drop in power levels according to the observations 
and predictions 

Figure 12: Demonstration of intruder detection using prediction 
accuracy 

Figure 9: Comparison of prediction accuracy of various prediction 
algorithms on testbed data (aggregated values after every 20 symbols) 



B. Security Applications 
Prediction models can also be used in security applications. 

For instance, large number of misses for occurrence of events 
based on the prediction algorithm trained using regular residents 
activities can trigger a security alarm as the pattern of the 
residents may differ with an intruder or an abnormal condition. 

As observed in the earlier section, the prediction model attains 
optimum predictability as the training sequence grows larger over 
time. Thus, any sudden massive drop in the prediction accuracy 
can indicate an anomaly, which can be a security threat (Fig. 12). 

C. Health Monitoring 
Sequential prediction techniques can be employed in health 

monitoring and assistance in smart home environments. 
Specifically for inhabitants suffering from dementia, prediction 
models can be designed to learn daily activity patterns and assist 
them by reminding the next routine activity based on the 
predictions. Another application of prediction can be assisting the 
elderly in medication. The device locations and usage patterns 
can be recorded simultaneously with the occupancy patterns. In 
this application, the prediction model is trained on the location 
and usage of the medical dispenser. The Time-aware Active LeZi 
algorithm can play a critical role in such applications by 
observing the occupancy of the room in which the dispenser is 
located as well as the usage of the dispenser throughout the day. 

VII.  CONCLUSION AND FUTURE WORK 
The existence and rise of smart homes has increased the need 

of applying intelligence in learning the activities of inhabitants 
and predicting their future demands in applications like resource 
management, energy efficient automation, security, and health 
monitoring. In this paper, we studied a sequential prediction 
model based on the Active LeZi algorithm. Specifically, we have 
evaluated the effects of the order of the memory in Markov chain 
model on the prediction accuracy.  We showed that limiting the 
memory of the Markov chain model in the Active LeZi algorithm 
can improve the performance of the prediction. We also 
suggested extensions to include the effects of the interrupted 
patterns and the temporal information of the patterns in the 
prediction model. We evaluated the performance of the proposed 
approaches using a small-scale smart home testbed as well as 
synthesized and showed that the suggested changes can lead to 
better prediction performance for the Active LeZi algorithm.  
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