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Abstract—A scalable and analytically tractable probabilistic
model for the cascading failure dynamics in power grids is con-
structed while retaining key physical attributes and operating
characteristics of the power grid. The approach is based upon
extracting a reduced abstraction of large-scale power grids using
a small number of aggregate state variables while modeling the
system dynamics using a continuous-time Markov chain. The
aggregate state variables represent critical power-grid attributes,
which have been shown, from prior simulation-based and his-
torical-data-based analysis, to strongly influence the cascading
behavior. The transition rates among states are formulated in
terms of certain parameters that capture grid’s operating charac-
teristics comprising loading level, error in transmission-capacity
estimation, and constraints in performing load shedding. The
model allows the prediction of the evolution of blackout proba-
bility in time. Moreover, the asymptotic analysis of the blackout
probability enables the calculation of the probability mass func-
tion of the blackout size. A key benefit of the model is that it
enables the characterization of the severity of cascading failures
in terms of the operating characteristics of the power grid.

Index Terms—Blackout probability, cascading failures, Markov
chain, power grids, stochastic analysis.

I. INTRODUCTION

W HILE power grids are reliable systems, they have expe-
rienced large cascading-failure blackouts at enormous

costs. A large number of physical attributes of the power grid,
such as voltage and frequency at various points in the grid,
power-flow distribution, and the functionality of the grid’s com-
ponents, determine the state of the power grid at each time.
Various events, such as contingencies, control actions, and de-
mand changes, may alter the state of the system. Cascading
failures in power grids can be described as successive changes
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of power-grid states, for instance, due to component failures,
transmission-line tripping, voltage instability, phase mismatch,
and changes in power-flow distribution. However, the analytical
modeling of the evolution of the detailed system state during
cascading failures may not be feasible. This is mainly due the
large space of power-grid states and the large number of param-
eters affecting the states, not to mention the complexity of the
interactions between the physical attributes and the stochastic
dynamics of states. Besides the physical attributes of the power
grid, its operating characteristics (e.g., the power-grid loading
level) also affect the interactions among components and the
cascading behavior of the power grid. For example, the cas-
cading-failure models reported in [1] and [2] do show that there
are critical transitions in the cascading behavior as the load of
the system is elevated. Moreover, as power grids become more
reliant on the communication and control systems for their daily
operation, a new set of operational characteristics pertaining
to control and communication systems begin to influence cas-
cading failures [3].
In the past two decades, researchers have exerted consider-

able efforts in modeling and understanding cascading failures
in power systems. Among such efforts is the class of proba-
bilistic models [2], [4]–[7]. However, many of the existing prob-
abilistic models suffer from a disconnect between the param-
eters of the abstract models they employ and the physical and
operating characteristics of the system. We believe that a proba-
bilistic model for cascading failures that exhibits a clear connec-
tion between its abstract parameters and the physical and oper-
ational characteristics of the system will provide further insight
into the cascading behavior.
In this paper, we present an approach that aims to balance

the tradeoff that exists between the scalability and analytical
tractability of probabilistic models for cascading failures, on
the one hand, and the level of details in the description of the
physical and operational characteristics that can be embedded
in the model on the other hand. Specifically, we construct a
scalable and analytically tractable probabilistic model for cas-
cading failure dynamics while retaining certain key physical at-
tributes and operating characteristics of the power grid. This is
accomplished by defining a reduced abstraction of the detailed
power-grid state space (a small set of equivalence classes) by
means of identifying a few aggregate state variables based upon
our analysis of power-system simulations and historical data.
The aggregate state variables describe the physical attributes of
the power-grid states and govern the cascading failure behavior.
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The stochastic dynamics of cascading failures are then modeled
by the sequence of stochastic transitions among the “abstract”
states according to a continuous-time Markov chain. We term
the model presented in this paper the stochastic abstract-state
evolution (SASE) model. The state-dependent transition rates of
the SASE model are formulated in terms of the operating char-
acteristics of the power grid including power-grid loading level,
transmission-capacity estimation error, and the constraints in
implementing load shedding.
The SASE model offers two major contributions beyond ex-

isting stochastic models for cascading failures. First, it enables
the prediction of the evolution of the blackout probability in
terms of key power-grid operating characteristics, which is an
expansion of our earlier work [6]. Second, and more impor-
tantly, it enables an asymptotic analysis that leads to the ana-
lytical characterization of the probability mass function of the
blackout size as well as the severity of cascading failures in
terms of the key power-grid operating characteristics. We em-
phasize that the proposed concept of reducing the space of the
detailed power-grid states is key in the scalability and analytical
tractability of the SASE model.

II. RELATED WORK

In the last two decades, a great volume of work has been
devoted to understanding and analyzing cascading failures in
power grids (see [8] for a review). Efforts in modeling cascading
failures in power grids can be categorized into three classes:
analysis of cascading failures using power-system simulations
[1], [9], deterministic analytical models [10], and probabilistic
analytical models [2], [4]–[7]. Here, we review the probabilistic
analytical models for cascading failures.
The work by Brummitt et al. [4] and the CASCADE model

by Dobson et al. [2] model cascading failures triggered by ini-
tial load increments on certain components of the system. In
both models, failures occur due to overloaded components and
the cascading failure develops as a result of redistribution of
loads among the remaining components. However, the redistri-
bution of loads are based upon simple assumptions; for example,
the CASCADE model assumes loads will be added equally to
the components of the system as a result of failures. The prob-
abilistic analytical models based upon branching processes [5],
[11], [12] have also emerged, providing an analytical frame-
work to study the statistical properties of cascading failures
such as the probability distribution of blackout size. Reported
branching-process approaches model cascading failures by con-
sidering generations of failures, whereby each failure in each
generation independently produces a random number of sub-
sequent failures in the next generation, and so on. In [11] and
[12], the authors estimate the failure generation parameter of
the branching process model for cascading failures using his-
torical outage datasets. Notably, in [12] the authors account for
varying failure generation parameter as the cascade progresses
instead of a fixed parameter as in [11]. However, different from
the work presented in the current paper, the work in [12] as-
sumes that all line outages are homogeneous in their type.

Recently, we developed a scalable probabilistic approach [6],
based upon regeneration theory and a reduced state space of the
power grid, to model the dynamics of cascading failures in time.
The transition rates among the states of the model are defined to
be state- and age-dependent, and they are calculated empirically
from power-system simulations. This renewal-based approach
can collapse to a Markov process; however, it can also capture
the stochastic events when the underlying events are non-Mar-
kovian. The independent and concurrent work by Wang et al.
[7] provides a Markov-transition model for cascading failures.
The transition probabilities among states are derived from a sto-
chastic model for line overloading using a stochastic flow re-
distribution model based upon dc power-flow equations. This
model enables simulating the progression of cascading failures
and its time span. However, due to the analytical complexity
of the time-varying transition probabilities the analytical and
asymptotic characterization of probabilistic metrics such as the
blackout probability and distribution of the blackout size is not
possible. In this paper, we present a scalable probabilistic model
for the stochastic dynamics of cascading failures based upon
a continuous-time Markov chain framework that captures key
physical attributes of the power grid through its parameters and
the novel definition of its reduced state space.

III. ABSTRACT STATE SPACE OF POWER GRIDS

Our power-system simulations [6], as well as available his-
torical blackout data [13]–[15], all suggest that the functionality
status of transmission lines and their power-flow capacities [16]
are key physical attributes that should be considered in mod-
eling cascading failures. The importance of these attributes are
clear as line failures have always been a part of historical large
blackouts and the capacity of transmission lines determine the
power-delivery capacity of the grid. For simplicity, we term the
nonfunctional lines (e.g., lines that are tripped by protection re-
lays, overheated, or physically failed) the failed lines. Even in
the case where only the functionality status of the transmis-
sion lines of the system are considered, the size of the state space
of the power grid is exponential in .
We consider three aggregate state variables to represent the

power-grid state. The first variable is the number of failed lines,
, which has been commonly considered in the probabilistic

modeling of cascading failures to represent power-grid states
[1], [5], [7], [12]. Next, we consider the maximum of the capac-
ities of all of the failed lines, . Our simulations presented
in [6] have shown that dominates the effect of the capacity
of the failed lines in cascading failures. Finally, our simulations
presented in [6] have shown that certain power-grid states are
cascade-stable, defined as a state for which once entered no fur-
ther failures occur in the system. Accordingly, we define a new
aggregate state variable, termed cascade-stability, which collec-
tively captures many other physical attributes of the power grid
(as the physical attributes specify whether a power-grid state is
cascade-stable or not). We represent the cascade-stability by a
binary state variable , where indicates a cascade-stable
state and indicates otherwise.
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Fig. 1. Power-grid states, abstract states, and transitions between the abstract
states.

Here, we employ an expanded notion of equivalence classes
of power-grid states compared to what we originally proposed
in [6]. By utilizing the three introduced state variables as the de-
scriptors of power-grid states, we partition the space of all de-
tailed power-grid states into a collection of equivalence classes,
denoted by . Such coarse partitioning of the state space of the
power grid implies that detailed power-grid states with the same
aggregate state-variable values (i.e., the same value of
and ) will belong to one class and will be indistinguishable as
far as the reduced abstraction is concerned. We term each class
of the power-grid states an abstract power-grid state or in short
an abstract state, and label each as , where

.
The notion of power-grid states, abstract states, and transition

between the abstract states is sketched in Fig. 1. Each large circle
represents an abstract state and each of the four topological
graphs inside each large circle represents a detailed power-grid
state, albeit with common values for and . We as-
sume that the power-flow capacity of the lines can be quan-
tized into a discrete and finite set of capacity values, i.e.,

. Thus, the cardinality of the abstract-state
space is . Therefore, the equivalence-class ap-
proach reduces the complexity associated with tracking the sto-
chastic dynamics of the power grid from exponential to linear
in .
Next, we provide two real scenarios of cascading failures

from the historical blackout data that support the dependency
of the cascading behavior on and . The time evolution
of the cumulative line failures for the blackouts in July 1996 and
August 1996 in the Western Interconnection [13] are shown in
Fig. 2(a). The number of initial and final transmission-line fail-
ures are very close in these two blackouts. However, the approx-
imate average line-failure rate in the July 1996 blackout is 1.6
failures per minute during the escalation phase of the cascading
failures, while it is 4 failures per minute in the August 1996
blackout. Most notably, the initial disturbance of the blackouts
were two 345-KV transmission-line failures in the July 1996
blackout and two 500-KV transmission-line failures in the Au-
gust 1996 blackout. Next, the time evolution of the cumulative
line failures for the blackout in the August 2003 in Eastern Inter-
connection [15] is shown in Fig. 2(b). Based upon the data, the

Fig. 2. Cumulative line failures in the (a) July 1996 WSCC blackout (solid
line), August 1996WSCC blackout (dashed line), and (b) August 2003 blackout
[13], [15]. The time of the initial failure is set to zero. The figures are reproduced
in the same way as in [5].

average line-failure rate is approximately 1.4 failures per minute
at the beginning phase while it is 18 failures per minute at the
escalation phase of cascading failures. This can be described
by the larger number of failures in the grid in the second phase
as well as failure of some critical lines with high capacities. In
summary, the aforementioned observations extracted from his-
torical data and our simulations both support the selection of
the capacity of the failed lines and the number of failures as key
players in the formulation of the abstract state space.

IV. SASE CASCADING-FAILURE MODEL

The SASE model describes the stochastic dynamics of
cascading failures using a finite state continuous-time Markov
chain whose state space is defined by the abstract states

for . Recall that the state
variable indicates whether a state is cascade-stable or not;
hence, it is utilized to specify the absorbing and
nonabsorbing states of the Markov chain. We term the
nonabsorbing states as transitory states.
We consider two types of state transitions in the SASEmodel.

The first type is termed as cascade-stop transition, which is from
a transitory state, say , to an absorbing state, say , (i.e.,

and ) such that and . The
cascade-stop transition leads to the end of the chain of failures,
which in real systems can occur as a result of the implementa-
tion of successful control actions, formation of operating islands
in the power grid, or occurrence of a large blackout. The second
type of transitions is termed a cascade-continue transition. We
assume that the cascade-continue transition occurs as a result of
a single line failure in the system. The single-failure-per-transi-
tion approximation is based upon the assumption that time is di-
vided into sufficiently small intervals such that each interval can
allow only a single failure event. By cascade-continue transi-
tionwemean transition from a transitory state, say , to another
transitory state, say (i.e., ) such that
and . To this end, the cascading failure can be
described as a sequence of Markovian transitions among transi-
tory states with a final transition to some absorbing state.
We represent the state of the system at time by , an
-valued, continuous-time Markov chain. The transition prob-
ability matrix of the chain is denoted by , where its
th element is .

Note that the notation is used to represent probability measure
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defined on the collection ( -algebra) of all events (subsets of
the sample space ) generated by the random variables defined
in this paper.
Let for represent the probability rate of transition

from state to state , which depends upon the origin and des-
tination states of the transition. This dependency allows for cas-
cading behavior and will be explained in details in Section VI.
The is defined as

for

for
(1)

where satisfies [17]. A Markov chain
is completely determined by the transition rate matrix

with as its th element.
We formulate the transition rates of the SASE model based

upon the transition probabilities of its embedded Markov chain
(EMC).We denote the state of the EMC at discrete time instant
by . The one-step transition probability matrix of the EMC
is denoted by . According to the definition of the SASE
model, the elements of has the form given in (2), shown
at the bottom of the page, where represents the
probability that the system transits from a transitory state, say
, to state for which the value of and does not vi-

olate the transition rules in (2). In Section VI, we will paramet-
rically characterize based upon our observations
from simulations.
We approximate based upon (1) and for a small

as for . We consider as (the
small) unit of time approximating the average time between
failures during the rapid escalation phase of the cascading
behavior, which is relatively small compared with the total
duration of cascading failures. We estimate such using the
historical blackout data provided in [5] and [13]. However,
note that, based upon the individual blackout events, may
vary depending on the power system and its operating charac-
teristics. For example, historical data suggests approximately
18 transmission-line failures per minute on average during the
rapid escalation phase of the cascading failure for the August
2003 Eastern Interconnection blackout ( 0.055 min) [13]
while this number is 4 failures per minute for the August 1996
Western Interconnection blackout ( 0.25 min) [5]. In our
calculations we have selected an intermediate value of
0.1 min. We emphasize that, while we consider a fixed for
the system, it is the state-dependent nature of the transition
probabilities that inherently adjusts the transition rates
to accommodate all phases of cascading failures, such as the
precursor and escalation phases.
In Section V, we introduce our simulation methodology,

which will be used in the parametric formulation of .

V. CASCADING-FAILURE SIMULATION

A. Overloading and Failure Mechanism

Here, we introduce our approach for simulating cascading
failures resulting from line overloading. Our simulations are
based upon the dc power-flow equations as described in [18].
A transmission line has a power-flow capacity that can

be governed by the thermal limit, the voltage drop limit, or
the steady-state stability limit of the line [16]. We denote the
power-flow capacity of a transmission line, say the th line, by

. The values of the transmission lines are used by the
control center of the power grid as constraints in the power-flow
optimization framework (presented in Section V-C).
Similarly to the approach presented in [1], we consider a

threshold for the power flow through the th line above
which the protection relay (e.g., circuit breaker or impedance
protective relay) trips the line. Various factors and mechanisms
in the power grid may affect the threshold for transmission
lines. For example, the line overloading may lead to smaller
measured impedance than relay settings [19], the thermal
power-flow capacity of a transmission line may vary due to
changes in the surrounding temperature and ambient weather
conditions [20], or communication/control system problems
may lead to inaccurate assumption in the control center.
In all of these examples, the protection relay may trip the line
when the power flow exceeds the threshold . Now, one
may interpret the discrepancy between the threshold value ,
which represents the true capacity of the line, and the nominal
capacity as an error by the control center in its estimation
of the true capacity of the lines. By adopting this point of view,
in this paper, we term the capacity estimation error.
While the approach presented in [1] considers a fixed threshold,
in this paper we assume varying threshold to capture the effects
of various parameters on the threshold and consequently on the
cascading behavior. In our simulations, we quantify
by a fraction of , i.e., for .
Therefore, we assume a line is overloaded when the power flow
through the line exceeds . As such, the parameter
controls the capacity estimation error. Moreover, we categorize
all of the transmission lines in the power grid based upon their
capacity values into five categories with values from the set

20 MW, 80 MW, 200 MW, 500 MW, 800 MW [16].
Similarly to the work presented in [21], in our simulations, we
allow only one line trip at a time by randomly (according to the
size of overload) tripping one of the overloaded lines.
Studies of major blackouts have shown that incorrect opera-

tion of protection relays contributes to cascading failures [13].
To capture this effect in our simulations, we have considered a
small probability (0.04) for mis-operation of protection relays.
Due to space constraints, we will not investigate the effects of

or or or and
and

otherwise
(2)
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the mis-operation of the protection relays on cascading behavior
further. A study of such effects is presented in [22]. Finally, the
simulations in this paper use the IEEE 118-bus system. How-
ever, we also refer to our simulations of IEEE 300-bus system
for certain results to confirm the consistency of the observed
trends.

B. Operating Characteristics of the Power Grid

In studying the cascading failures, we consider three power-
grid operating characteristics as described below.
Capacity Estimation Error: Recall that in the previous sub-

section we introduced the parameter , which captures the ef-
fects of various factors and mechanisms that may lead to failure
of transmission lines when their power flow is within a certain
range of the maximum (nominal) capacity assumed by the con-
trol center. We use the parameter to control the capacity esti-
mation error (as described in the previous subsection).
Power-Grid Loading Level: We denote the power-grid

loading level by , which is defined as the ratio of the total de-
mand to generation-capacity of the power grid. The parameter
represents the level of stress over the grid in terms of the

loading level of its components. Note that the N-1 security is
ensured in all loading levels of the power grid.
Load-Shedding Constraint Level: Load shedding is a critical

control action when the system must be reconfigured to accom-
modate the disturbances on the power grid. In our earlier work
[23], we have shown that the efficiency of the load shedding in
responding to cascading failures depends upon the constraints
in implementing the load shedding in the system. The constraint
level is governed, for example, by control and marketing poli-
cies, regulations, physical constraints, and communication lim-
itations. The ratio of the uncontrollable loads (loads that do not
participate in load shedding) to the total load in the power grid
is termed the load-shedding constraint, denoted by ,
where means load shedding cannot be implemented and

means there is no constraint in implementing the load
shedding. The value of controls the level of controllability of
the load shedding in our simulations.
The effects of these parameters on the power-flow distribu-

tions are embedded in the power-flow optimization framework
as described in Section V-C.

C. Power-Flow Optimization Framework

For completeness, we summarize the power-flow optimiza-
tion framework, introduced in our earlier work [3], [23].
Consider the transmission system of a power grid with

nodes (substations) interconnected by transmission lines. The
sets and are the set of load buses and the set of generator
buses, respectively. The notation represents the demand at
the load bus . The dc power-flow equations [18] can be sum-
marized as

(3)

where is a power vector whose components are the input
power of nodes in the grid (except the reference generator),
is a vector whose components are the power flow through
the transmission lines, and is a matrix whose elements can be
calculated in terms of the connectivity of transmission lines in

the power grid and the impedance of the lines. This system of
equations does not have a unique solution. Therefore, to find the
solution to this system, we use, as done in [1], a standard opti-
mization approach with the objective of minimizing the simple
cost function that follows:

(4)

A solution to this optimization problem is the pair and that
minimizes the cost function in (4). Note that ,
where will be determined by the optimization solution. In
this cost function, and are positive values representing
the generation cost for every node and the load-shedding
price for every node , respectively. We assume a high
price for load shedding so that a load is to be curtailed only
when there is generation inadequacy or transmission capacity
limitations. The constraints for this optimization problem are
listed here.
1) DC power flow equations: .
2) Limits on the generators’ power: .
3) Limits on the controllable loads:

.
4) Limits on the power flow through the lines:

for .
5) Power balance constraints (power generated and consumed
must be balanced): .

Note that, in the above formulation, the quantities are neg-
ative and the ’s are positive (by definition). The operating pa-
rameter affects the initial load on the system, i.e., the ’s. The
solution to this optimization problem determines the amount of
load shed, generation, and the power flow through the lines.
If failures occur in the power grid, we assume that the control
center redistributes the power in the grid by solving the above
optimization problem. If the new power-flow distribution over-
loads lines (based on the overload definition in Section V.A),
more failures will occur in the power grid. This process iterates
until no more failures occur in the system.
We use MATPOWER [24], which is a package of MATLAB

m-files, for solving the optimal power flow and simulating
cascading failures. The quasi-static approaches that employ
a power-flow distribution framework together with a method
to identify overloaded lines and individual failures to model
cascading failures have been used in several works in the
literature such as [19], [21], and [25]. In Section VI, we will
use simulations to study the effects of the three introduced
power-system operating characteristics on cascading failures
and use this understanding to parametrically formulate .

VI. TRANSITION PROBABILITIES

Here, we parametrically model introduced in
(2). In order to simplify the formulation of the ,
we consider the probability components depicted in Fig. 3. We
will introduce the components represented in Fig. 3 as we go
through this section and refer to this figure as necessary.
Note that, for every transitory state, say , there is a

single associated absorbing state, which we denote by (see
Fig. 3). Note that state has the same and values as
those for but it has (where as ). Based upon
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Fig. 3. Components of . First, transition from a transitory state
is divided into two categories: transition to an absorbing state and transi-

tion to a transitory state (states in the dashed circles are transitory states). Next,
the transition to a transitory state is also divided into two categories: transition
to a state with the same values as that of , and transition to a state
whose maximum capacity of the failed lines is larger than associated with
the state .

whether the next state of the transition is an absorbing state or
not, we decompose the transition probability as follows:

(5)

Note that implies that cascading failure ends in
the system. As such, we define the probability of cascade-stop

transition as .
Clearly, ,
where when is equal to and
otherwise. Moreover, we define

, where
is the conditional cascade-continue transition

probability. Thus, we rewrite (5) as

(6)

for . Note that .
The rest of this section is devoted to the parametric represen-

tation of and , and therefore, the para-
metric formulation of due to (6).

A. Cascade-Stop Probability

Here, we will present simulation results that show the
dependency of on and . To simplify the ob-
servation of the effects of and on , we have
studied as a function of and individually
represented, respectively, by and . In
Appendix A, we present a simple approach similar to the ap-
proach presented in [26] in conjunction with certain reasonable

Fig. 4. (a) and (b) for the IEEE 118-bus system and
the IEEE 300-bus system for , and .

Fig. 5. Simulation results of for and three values
of . The solid line is the parametric approximated function when .

assumptions (originated from the simulations of the power
grid and power grid characteristics) to approximately represent

in terms of a weighted superposition of

and as

(7)

where, in our formulation, we simply set .
Fig. 4(a) and (b) shows the simulation results of

and , respectively, for the IEEE 118-bus and
the IEEE 300-bus systems. The IEEE 118-bus system has
186 transmission lines and the IEEE 300-bus systems has
409 transmission lines. Note that and
exhibit the same general behavior in both grids. Due to the
space constraints, we will limit our presentation to the IEEE
118-bus system with the knowledge that a similar approach for
the parametric modeling of transmission rates can be applied to
larger scale grids by adjusting the parameters of the model.
Figs. 5 and 6 show the simulation results of and

for the IEEE 118-bus system, respectively, for dif-
ferent operating settings of the grid. The results of our simula-
tions are obtained using 1000 scenarios of random initial dis-
turbances with two or three random line failures. We consid-
ered three different values of load-shedding constraint level
in order to show that operating characteristics of the power grid
affect the stability probabilities while the value of and are
fixed to be 0.7 and 0.1, respectively (the effects of , and are
discussed in Section VI-C).
From Fig. 5, we observe that is bowl-shaped, with

three identifiable phases, which are described in detail below.
The importance of the bowl-shape form is that it reflects the
general cascading behavior as failures accumulate. A similar
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Fig. 6. Simulation results of for and three
values of . The solid line is the parametric approximated function when .

three-phase behavior can be observed in the historical cas-
cading-failure data presented in Fig. 2.
First Phase: This phase represents the regime when the like-

lihood of an additional failure increases substantially as a func-
tion of the number of failures. A qualitatively similar increase
in the failure propagation probability has also been observed by
Dobson [12]. This phase starts at (due to N-1 security).
To this end, we define the parameter as , which rep-
resents, intuitively speaking, the reliability of the power grid
to initial disturbances with two failures. Also in the first phase,

decreases from to a small value, (our
results suggest ), as the number of failures increases
and reaches a critical value.
Second Phase: This phase represents the escalated phase of

cascading failures. During this phase is small (we as-

sume during this phase) and the power grid is
highly vulnerable. This phase starts at , which rep-
resents the number of failures in the power grid after which the
cascading failure enters the escalated phase. As expected, our
results show that, during this phase, the efficiency of the control
action (represented by ) hardly affects .
Third Phase: As increases further, the probability of

having an additional failure decreases as cascading-failure
behavior begins to phase out. This behavior can be attributed to
the finite size of the power grid or the fact that as more failures
occur “functional islands” may form in the grid, leading to the
termination of cascading failures. Therefore, in this phase, the
value of rises, and, finally, . Note that,
in this paper, we simply consider a fixed parametric model for
the third phase of , which only roughly approximates
the average scenario of various operating settings.
We propose the following parametric model to capture the

three aforementioned phases in

.

(8)

The parametric is shown in Fig. 5 for . Re-
call that we have judiciously selected a common parametric
model for the third phase of the bowl-shaped function across

various operating settings. Consequently, the parametric func-
tion shown in Fig. 5 does not accurately match the
simulation results for scenario in the third phase.
The empirically calculated is shown in Fig. 6.

The value of indicates, intuitively speaking, the
reliability of the power grid when the maximum capacity of
the failed lines in the grid is . Note that de-
creases as increases, which means that the power grid
is more vulnerable to additional failures when it has lost at
least a line with a large capacity value. We also observe that

decreases for all values as increases; how-
ever, the effect of on the reliability is larger when is
smaller. This is because control actions are most effective when
they are implemented in the beginning phase of cascading fail-
ures where is more likely to be small.
The is formulated parametrically as

(9)

where and . The

parametric function of is also shown (by the
solid line) in Fig. 6. This completes the parametric modeling
of based on (7). In Section VI-C, we show that the
value of are affected by , and . In the SASE
model, we will perceive the parameters beyond
abstract model parameters but as parameters that govern the
cascading behavior while maintaining a physical connection to
the operating characteristics of the system.

B. Cascade-Continue Probability

Recall that, for every transitory state , there is only one tran-
sitory state with the same as that of state and exactly
one more failure than that for state . We denote such state by

(see Fig. 3). Failure of a line with capacity smaller than or
equal to results in transitioning from state to state .
Similarly to (5), depending on whether the next line failure has
larger capacity than or not, we can write the conditional
cascade-continue transition probability by conditioning on
as

(10)

for and , where is defined
as the probability of having a line failure that results in
a higher capacity of the failed lines than . In (10),

and
.

The empirically calculated as a function of and
is shown in Fig. 7 with the same simulation settings as

that of the previous subsection. Our simulation results show
strong evidence that and affect . Results sug-
gest that regardless of the value of the power-grid state,
as increases the probability that a line with capacity larger
than fails increases. This is meaningful because, as the
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Fig. 7. Simulation results of as a function of and for
and .

number of failures increases the power grid becomes vulnerable
and hence large transmission lines may be affected by contin-
gencies. Moreover, the ratio of the number of transmission lines
with capacity larger than to the total number of functional
lines increases with . The next general observation from Fig. 7
is that for the same value, as increases the probability
that a line with capacity larger than fails decreases. This
is mainly due to decrease in the number of lines with capacity
value larger than (as increases). Furthermore, it is
less likely to have states with value after reaches a cer-
tain threshold denoted by (the value of increases as
increases). This means that as approaches , line failures
with capacity larger than become highly likely.
Based upon our simulations, the role of and in

is subtle. Therefore, in this paper, we approximate for
different operating characteristics of the power grid with a fixed
function. The above trends in are captured by

(11)

for , where and is dependent.
The parametric ’s are shown in Fig. 7. Note that the
overestimation of the curves in Fig. 7 is due to employing a
common parametric model for various operating settings as well
as the introduced parameter (there are no simulation data
when is beyond .)
Next, we find the parametric formulation for .

Our simulation results suggest that and play key
roles in determining . Fig. 8 shows the empiri-
cally calculated as a function of and .
From Fig. 8, we observe that, conditional on the occurrence of
an additional failure with capacity larger than , the prob-
ability of transitioning to state decreases as increases.
The results suggest that lines with capacity value close to
have a higher probability of failure than those with much larger
capacities than . We also observe that the probability of
transitioning to state increases as increases. This is
because the power grid becomes more vulnerable when
is large. By comparing the simulation results corresponding to
two values of in Fig. 8, we conclude that the role of in

is also subtle and, similarly to , the effect
of operating characteristics on is not considered.

Fig. 8. Simulation results of as a function of and
for and and two values of . The parametric approximations
are represented by solid lines.

To capture the described trends, is modeled para-
metrically as

(12)

where is what we term the weight of transition to a state
with the maximum capacity of the failed line equal to . We
have assigned these weights such that they approximate the sim-
ulation results presented in Fig. 8 using (12). Here, the value
of the weights are set to

, and . This com-
pletes the modeling of presented in (2).

C. Effects of Operating Characteristics on SASE Parameters

The SASE model parameters determine different
cascading behaviors. These parameters may vary under dif-
ferent operating conditions and also across different power
grids due to different connectivity pattern and components
characteristics. Recall that we made the general observation
that the power grid is more reliable when are
larger. To illustrate the effects of operating characteristics on

, the values of these parameters (obtained based upon
simulation results) are shown in Figs. 9 and 10 for different

and values. Our simulation results suggest that the power
grid is more reliable ( are larger) when , and are
small. We observe that when any of the , and parameter
increase they add more stress to the system and the effect of
contingencies becomes larger. Therefore, the probability of
an additional failure in the system increases ( , and
decrease). We also observe that when any of , or increase,
the cascading failure enters the rapid escalation phase with
smaller number of failures ( decreases).

VII. ANALYSIS OF THE SASE MODEL

Here, we analyze the SASEmodel by understanding the prop-
erties of the transition probability matrix . To simplify the
analysis, we first rearrange the indices of states in by fol-
lowing three simple rules so that becomes upper diagonal ma-
trix denoted by . The three rules pertain the indices of states
in such that: 1) if ; 2) if but

; and 3) if and ,
but and . Note that the SASE Markov chain is not
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Fig. 9. SASE-model parameters (a) , (b) , (c) , and (d) as a function
of parameterized by .

Fig. 10. SASE-model parameters (a) , (b) , (c) , and (d) as a function
of parameterized by .

irreducible (and hence not ergodic) because is upper diag-
onal. This further implies that there is no stationary distribution
for the SASE model and the canonical limit theorems of ergodic
Markov chains are not applicable. Regardless, is governed
by

(13)

where denotes the matrix whose elements are time deriva-
tive of [17]. In principle, the solution of (13) is given by

. While the numerical solutions of can
be easily obtained, to have better insight we pursue an analytical
approach which can result in the asymptotic solution of .
To do so, the eigenvalues of and a com-
plete system of associated right eigenvectors
need to be determined. Then, can be represented as

, where is the matrix whose column vectors
are and . The matrix is diagonal
with as its th diagonal element.
Due to the upper diagonal form of and by carrying out

simple matrix manipulations, we can express as

(14)

where and .
Notice that for . Since

is upper diagonal is negative for all , and hence
.

Now, let be the conditional probability of
reaching a state with or more failures by time starting from
an initial state . The can be obtained as follows:

(15)

where represents the set of indices of states with failures,

i.e., . The estimates the evolu-
tion of the risk of cascading failures in time.
Further, using the asymptotic analysis, we can derive the con-

ditional probability that a power grid eventually reaches a state
with failures from an initial state defined as

(16)

Hence, the probability mass function (PMF) of the blackout
size, conditional on the initial state, can be computed by cal-
culating for .

VIII. RESULTS

Here, we present results obtained from the SASE model ap-
plied to IEEE-118 bus system.

A. Conditional Blackout Probability

The PMF of the blackout size conditional on the initial state
is calculated using (16) and shown in Fig. 11 for a

fixed initial state with and MW. Fig. 11 also
shows the effects of the operating characteristics of the power
grid on . The results suggest that, when the power grid
operates under a reliable operating configuration (small values
of and ) the PMF of the blackout size has an exponential
decay, which has also been observed empirically byDobson (see
Figs. 1, 2 in [12]) using real outage datasets [14]. On the other
hand, when the power grid is stressed (large values of and )
the probability of large blackouts increases and a hump appears
near the tail of the PMF. These conclusions from the analytical
SASE model are confirmed by power-system simulation results
as shown in Fig. 12. Note that the set of simulation results used
to validate these conditional probabilities are different from the
set of results used to identify the model parameters. All in all,
these results validate that the SASE model with its low-dimen-
sional, abstract state space is effective in capturing the dynamics
of cascading failures in the power grid.
Note that the average size of cascading failures is approx-

imately four in the scenario without stress [Fig. 12(a)] while
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Fig. 11. Conditional PMF of the blackout size for four operating-characteristic
settings and and 20 MW.

Fig. 12. Analytical and empirical conditional PMF of the blackout size (a)
without stress, i.e., and , and (b) with stress, i.e.,

and , for the initial state with and
MW.

Fig. 13. Conditional blackout probability for as a function of
(a) parameterized by and (b) parameterized by for the initial state with

and 20 MW.

this number is approximately 61 in the scenario with stress
[Fig. 12(b)]. Therefore, one could use the SASE model to
characterize the conditions for occurrence of large blackouts by
identifying the operating characteristics that result in a hump in
the tail of the PMF.
Next, consider the conditional probability of reaching a

blackout state with at least failures from an initial state
denoted by . For a fixed and

and MW, the dependence of on
and is shown in Fig. 13(a) and on and in Fig. 13(b). As
expected, increases with , and . The results also
suggest that at certain settings of the operating characteristics,
a phase transition occurs in the blackout probability. This
represents the critical operating settings for which the power
grid becomes highly vulnerable to cascading failures.

Fig. 14. Probability of reaching a blackout, , with or
more failures for , and initial states (a) with
and (b) with , and different values of .

B. Conditional Blackout Probability as a Function of Time

The numerical results of the conditional blackout probability
are calculated using (13) and (15). As a repre-

sentative example, we have calculated for
and for different initial states, , as

shown in Fig. 14. As the results show, the values of and
associated with the initial state affect the evolution of

the blackout probability. In particular, both the probability of
reaching a power-grid state with or more failures and its rate
of change during escalation phase increase with and .
We reiterate that while we have assumed a single-line failure at
a time in our model, the escalation phase in the cascading failure
occurs as a result of shorter time between failures due to higher
transition rates for such states (as the transition rates are state
dependent). Also, note that exhibits three phases.
Interestingly, the three-phase theme of cascading failures were
also seen in the behavior of the cascade-stop probability as well
as the evolution of the accumulative number of failures.

C. Failure Evolution

Fig. 15 shows four realizations of the cascading-failure sce-
narios in terms of the evolution of the cumulative number of
failures obtained using the SASEMarkov chain. The initial state
of the power grid in all the four realizations has two line fail-
ures with 80 MW. Note that, in the realization with
163 eventual failures, the number of failures increases relatively
gently at the beginning; however, failure of a line with large ca-
pacity at 10 min results in rapid increase in the number of
failures in the power grid. In contrast, the number of failures
in other realizations increases rapidly right from the beginning
but they transit to stable state earlier as the value of in
these cases is larger. Note that, from Fig. 15, we observe similar
forms to those shown in Fig. 2 for the historical blackouts.

D. Size of the Cascading Failures

To assess the severity of cascading failures, we consider the
number of subsequent failures induced by each initial failure.
For a given initial state with initial failures, we define

, where is the random variable for
the final number of failures in the power grid after cascading
failure ends. Here, we study the mean of as a metric rep-
resenting the severity of cascading failures, which can be cal-
culated as . (For
this metric to be meaningful, the initial number of failures
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Fig. 15. Realizations of the evolution of the cumulative line failures using the
SASE model for , and 80 MW.

Fig. 16. for the IEEE 118-bus system as a function of load-shedding
constraint level and the capacity estimation error for and the initial
state with and 20 MW.

Fig. 17. for the IEEE 118-bus system as a function of the power-grid
loading level and the capacity estimation error for and the initial state
with and 20 MW.

must be small, which in general is met in most real scenarios.)
Figs. 16 and 17 show that (for ) increases with

and . From results in Fig. 16, we observe that there is a
critical value of load-shedding constraint level (approximately

) above which strong cascading behavior is observed.
Furthermore, this trend becomes more evident and aggressive as
the capacity estimation error increases. Similarly, the results
in Fig. 17 suggests that there is a critical loading level (approxi-
mately ) for which the rate of change in increases
abruptly for all values of . We reiterate that theN-1 security has
been ensured in all loading levels of the power grid; therefore,
the initial contingency is assumed to have at least two initial
failures.

IX. CONCLUSION

We have developed a scalable and analytically tractable
probabilistic model, termed the stochastic abstract-state evolu-
tion model, which describes the dynamics of cascading failures
based upon Markov chains. The state space of the SASE model
is defined by a reduced, abstract state space that retains key
physical attributes of the power grid. We have formulated
the state-dependent transition rates associated with the SASE
model in terms of key operating characteristics of the power
grid including the power-grid loading level, transmission-ca-
pacity estimation error, and constraints in implementing load
shedding. The temporal analysis of the SASE model and its
asymptotic behavior together enable determining the proba-
bility mass function of the blackout size, the evolution of the
blackout probability from a specific initial state, as well as
assessing the severity of the cascading behavior as a function of
various operating settings of the power grid. The SASE model
also enables the identification of critical regions of the space
of key power-grid operating characteristics for which severe
cascading behavior may occur.

APPENDIX A
DERIVATION OF (7)

We start by defining the following events: 1) , which
is the event that cascade-stop transition occurs; 2) , which
is the event that the power grid has failures; and 3) ,
which is the event that the maximum capacity of the failed
lines in the power grid is . Note that is the
conditional probability . Next, we
use the simple approach used in [26], in conjunction with
certain reasonable assumptions to approximately represent

in terms of a weighted superposition
of and . We begin by noting
that multiple application of Bayes rule yields

(17)

Using the representation in (17), we can write

(18)

With a similar approach, we can also write

(19)
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Now, using (18) and (19), we can write

(20)

where . In this paper, and
are denoted by and ,

respectively.
Next, we assume that the dependence of the event

on the event is weaker than the dependence of the event
on the event , which implies that

. This simplifying assumption can be
justified from the physical characteristics of power grids. Based
on our simulation results, we know that given that is large,
there is a high probability that is also large; on the other
hand, when is small then the probability of having large

is small. For example, when is large the probability
of high capacity line failures increases due to high stress on the
system and the large ratio of the number of high capacity lines
to the total number of lines in the system. Therefore, although
the knowledge of event adds information about the occur-
rence of the event we assume that it does not significantly
alter the probability distribution of the event given .
Similarly to the previous assumption, we assume that the depen-
dence of the event on the event is weaker than the
dependence of the event on the event . Hence, when

is small then the probability of being large is small
and does not alter this probability significantly. These as-
sumptions enable us to approximate (20) by (7).
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