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Abstract—Cascading failures in power grids are high impact
societal and economical phenomena. Local interactions among
the components of the system and interactions at-distance, based
on the physics of electricity, as well as various stochastic and
interdependent parameters and factors (from within and outside
of the power systems) contribute to the complexity of these
phenomena. As such, predicting the size and path of cascading
failures, when triggered, are challenging and interesting research
problems. In recent years, interaction graphs, which help in
capturing the underlying interactions and influences among the
components during cascading failures, are proposed towards
simplifying the modeling and analysis of cascades. In this paper,
a Markov chain model is designed based on the community
structures embedded in the data-driven graphs of interactions
for power grids. This model exploits the properties of community
structures in interactions to enable the probabilistic analysis of
cascade sizes in power grids.

Index Terms—power grids, cascading failures, interaction
graph, community structure, Markov chain, cascade size

I. INTRODUCTION

Cascading failures in power transmission networks are com-

plex and high impact phenomena. Understanding and mitigat-

ing cascading failures are challenging due to the large number

of components and their complex interactions that affect the

cascade process. Various studies over the past decades have

focused on understanding different aspects of these phenomena

using methods including power system simulations as well as

probabilistic and deterministic modeling [1].

Understanding cascade size distribution in power grids and

predicting cascade size when it gets triggered, have also been

extensively studied in the literature. For instance, in the study

in [2], blackout data from historical sources as well as from

simulations revealed the power-law behavior in the blackout

size distribution (e.g. measured in terms of unserved energy

or number of tripped transmission lines). This suggests that

the likelihood of the occurrence of large blackouts is more

than what is traditionally expected. Additionally, prediction

of cascade sizes given an initial triggering event, can help in

estimating the risk of large blackouts and control and mitigate

the spread of failures during cascade processes. It also allows

for the characterization of the contributions of components of

the system towards large cascades.

In recent years, interaction graphs constructed based on

cascading failure data have helped in modeling and analyzing

cascading failures in an abstract and simple manner. Various

methods have been proposed in the literature to construct

graphs of interactions (refer to [3], for a survey). Unlike

physical topology-based graphs of power grids, where the

edges in the graph represent actual physical connections,

edges in the interaction graphs represent interactions among

the components during cascading failures. In such interaction

graphs, failure propagation is local, i.e., failure of a node can

cause probabilistic failure of directly connected nodes.

In our preliminary studies in [4] and [5], we studied the

structures and patterns of interactions using the community

structures in the interaction graphs constructed based on

the influence-based [6] and correlation-based [7] methods.

Communities are defined as densely connected groups of

components with scarce connections to components of other

groups [8]. Community structures in the interaction graphs are

important as they tend to trap failures within the communities

while exhibiting a lower likelihood of spreading failures

outside the community. In this study, we use the community

structures that are present in the interaction graphs to study the

failure propagation between communities and to characterize

the likelihood of various cascade sizes. For this purpose,

we formulate a Markov chain (MC) model based on the

community structures in the interaction graphs of the power

grid. This model exploits the properties of overlap and bridge

nodes of communities (i.e., nodes that belong to multiple com-

munities or have connections to other communities) as well

as the strength of influences/interactions of the components to

characterize transition probabilities in the MC. The states of

the community-based MC model allow the tracking of the size

of cascades. The main idea behind this model is that the groups

of components that form the communities provide an estimated

measure of cascade size, as a cascade entering a community

is likely to spread failures to other components within the

community and less likely to spread outside the community.

Thus, using the community-based MC, the distribution of

cascade sizes can be characterized using the size of commu-

nities. Additionally, depending on the initial conditions such

as the community from which the cascade starts, cascade size

distribution can be characterized. As suggested by historical

data and previous studies of cascading failures, we observe

power-law behavior in the distribution of cascade sizes, which

suggests the importance of community structures of interaction

graphs in cascade behavior.
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II. RELATED WORK

In this section, we briefly review the probabilistic [9]–[14]

and graph-based models [7], [15] related to this work that

focus on characterization and prediction of cascade sizes.

In a group of works in literature, it has been discussed that

the branching process [9], [10] can provide an abstract model

for outage distribution in cascading failures. In branching

process models, outages are grouped into generations, where

each generation is a sequence of components that failed within

a short time-frame. Each component in a generation can

independently produce a random number of child outages

based on a Poisson offspring distribution, with a specific

propagation rate. Thus, historical transmission line outage data

was used to estimate static propagation rates for all generations

[9] and varying propagation rates for each generation [10] to

predict the probability distribution of subsequent line outages

given distribution of initial failures.

Probabilistic models in the studies in [11]–[14], are used

for stochastic modeling of cascading failures. In the study in

[11], a regeneration-based probabilistic approach was used for

characterizing the probability of reaching an arbitrary blackout

size at any time given the initial power grid conditions,

which included loading level, maximum capacity of the set

of failed lines, and the number of failed lines. In the extended

study in [12], an analytically tractable Markov chain model

was developed, in which the states represented the critical

grid conditions identified in the study in [11]. Additionally,

operational characteristics i.e., loading level, load shedding

constraints, and line tripping threshold were also considered

for determining transition rates. This model was used to

analytically predict the probability of blackout in time and

also asymptotically determine the probability mass function of

blackout size. The study in [13] extended the Markov model in

[12] to consider the effect of interdependencies between power

and communication systems on cascade size distributions. In

the study in [14], the operational characteristics discussed in

[12], was used to study specific conditions which led to power-

law behavior on the probability mass function of blackout size.

In addition to probabilistic models, graph-based models [7],

[15] have also been used for analyzing cascades and their

size distribution. In the study in [7], a correlation matrix

constructed using cascade data of failure/functional statuses

of transmission lines, is used for predicting the distribution

of cascade sizes. And in the study in [15], a Markov chain

constructed using transmission line outage data, where states

represented generations of line outages, was used to predict

distribution of cascades of varying sizes.

The work presented in the current paper, belongs to both

of the aforementioned categories as it provides an MC model

based on the structures embedded in the interaction graphs of

power grids for analysis of cascading failures.

III. INTERACTION GRAPHS

In this section, we briefly review two models: influence-

based and correlation-based, for deriving interaction graphs

of power grids. For a comprehensive review of models and

analysis of interaction graphs, refer to [3]. We denote an

interaction graph by IG = (VIG, LIG), where VIG represents

the set of vertices in the graph. Similar to our previous

works [4], [5] and as transmission line failures are critical in

cascading failures, vertices represent the transmission lines of

the power system. The set LIG represents the set of interaction

links and the weight of the links represent the strength of

interactions.

A. Influence-based Interaction Graph

In this method, interactions among lines are derived in

two steps using the pairs of consecutive generations in the

overall cascade dataset. Note, the cascade dataset consists of

sequences of line failures. In the studies in [4]–[6], [15] as

well as in this study, all components in the current generation

m are assumed to have interactions with all components in

the next generation m + 1. Thus, in the first step, using the

branching process framework [10], propagation rate λi,m, is

used to specify the average number of failures in generation

m + 1 given failure of component i in generation m. In the

second step, the conditional failure probability of component

j, given failure of component i in the previous generation,

is assumed to be g[j|i] and is found by statistical calculation

of the number of times that component j failed in the next

immediate generation after failure of component i. In the final

step, the propagation rates and conditional failure probabilities

are combined together using the influence model [16] to

form the influence interaction graph H whose i, j element

is calculated as 1 − e−λig[j|i] for i 6= j and zero otherwise.

The i, j element is also the weight of the interaction between

the components i and j. Thus, matrix H can be viewed as a

directed and weighted interaction graph.

B. Correlation-based Interaction Graph

Correlation-based approach [7] simply considers the pair-

wise correlation among the failed components during cascades

without grouping failures into generations. The i, j element of

a correlation matrix CR is the Pearson correlation coefficient

between the failed components i and j in the overall cascade

dataset. Since the sequence of failed components in a cascade

is not considered, the correlation matrix is symmetric and can

be viewed as an undirected but weighted interaction graph.

IV. COMMUNITY STRUCTURES IN INTERACTION GRAPHS

Community structures identified in graphs can be of two

types (1) overlapped, such that a component may be a member

of more than one community and (2) disjoint, such that a

component is a member of a single community. Community

structures are identified in graphs using community detection

techniques (see [8] for a survey of such approaches). These

approaches utilize the inherent patterns and properties of the

graph, such as the weights of the links and their directions.

Community detection algorithms identify the set of com-

munities, C = {C1, C2, · · · , Cn}, where n is the number of

communities in the graph. Each community Ci consists of

a set of components with |Ci| representing the community



size or the number of nodes in the community. Membership

labels to the vertices in the graph VIG are also assigned. The

set of membership labels for vertex vi ∈ VIG is denoted

as ML(ni) = {Ca, · · · , Cb}, where Ca, Cb ∈ C. For the

overlapped community structures |ML(vi)| ≥ 1, while for

disjoint community structures, |ML(vi)| = 1, where |.| is the

cardinality of the set.

In our studies in [4] and [5], Infomap community detection

[17] enabled us to identify both overlapped and disjoint

community structures present in the interaction graph IG
using variations of its random walk algorithm. In overlapped

communities of directed/undirected interaction graphs, overlap

nodes (nodes that belong to multiple communities) contribute

to the spread of failures during cascades. In disjoint communi-

ties of undirected interaction graphs, bridge nodes (nodes that

have links to components in other communities) contribute

to the spread of failures during cascades. In the case of

directed interaction graphs with disjoint communities, there

are two types of bridge nodes: o-bridge nodes that have

outgoing links towards nodes of other communities and i-

bridge nodes that have incoming links from nodes of other

communities. We consider the former as the initiator of failure

propagation during cascades. Note, a node may have both

incoming and outgoing links, however, the spread of failures

to other communities occur through the outgoing links only.

V. MARKOV CHAIN FORMULATION

Using the concepts discussed in the previous sections,

we propose a Markov chain (MC) framework to model the

cascade size evolution using the community structures in the

interaction graph of the power grid. As mentioned earlier,

communities tend to trap failure propagation inside and thus,

provide an estimate on the likelihood of various cascade sizes

depending on the size of the community, where the failures

started, and the communities that failures can propagate to.

We define the state space of the MC based on all possible

combinations of the set of communities C in the interaction

graph IG. We consider two variables as the state variables of

the MC: (1) variable S representing the set of communities,

which have been involved in the cascade process (communities

with failed components) and (2) a binary variable I represent-

ing the condition that the cascade is contained within existing

communities and thus, cascade stops with an absorbing state

for MC (i.e., I = 1) or not (i.e., I = 0). Let X(t) denote the

state of the MC at time t ≥ 0 using pair (S(t), I(t)).
To illustrate the MC model and its state space, consider

the example interaction graph for a power grid shown in

Fig. 1-a. Assume that applying a community detection

algorithm on this graph identifies three disjoint communities,

named C1, C2, and C3, as shown in the figure. Given

these communities, there are fourteen possible states for

the MC in which, half of the states are transient and half

are absorbing (due to binary variable I) as below. Thus,

the state space of the MC for the system in Fig. 1-a is:

S = {({C1}, 0), ({C1}, 1), (({C2}, 0)), ({C2}, 1), ({C3}, 0),
({C3}, 1), ({C1, C2}, 0), ({C1, C2}, 1), ({C1, C3}, 0), ({C1,

C3}, 1), ({C2, C3}, 0), ({C2, C3}, 1), ({C1, C2, C3}, 0), ({C1,
C2, C3}, 1). For an interaction graph with n number of

communities, the number of transient states in the MC is∑n

r=1
n!

(n−r)!r! , where r represents the number of communities

involved in the cascade process. While the number of states

can be large for large values of n, the number of communities

in interactions graphs are generally much smaller than the

number of nodes in the graph and thus, state space explosion

will not occur for interaction graphs of power grids.

We define the transitions among the MC states by ex-

ploiting the connections among the communities. Specifically,

as the connections (overlap and bridge components) among

the communities result in propagation of failures among the

communities, they can cause the state of the MC to change

by involving more communities in the cascade process. In this

paper, we assume that in each transition of the MC, at most

one new community will get involved in the cascade process

(cascade will propagate to a new community through the

connections with communities in the current state of the MC).

This simplifying assumption can be justified by considering

that time has been divided into small instances and only

one new community can get involved at each time instance.

This assumption will help in characterizing the transition

probabilities and make the transition matrix of the MC sparse.

We also assume that if the cascade gets contained in the

communities that have already been involved in the cascade

process based on the current state of the MC, then the MC will

transit to an absorbing state with the same set of communities.

Thus, in our MC, three types of state transitions are possible:

(1) transition from a transient state to another transient state

with one additional community when failures propagate to

a new community, (2) transition from a transient state to

an absorbing state with the same set of communities when

cascade stops, and (3) finally, transition from an absorbing

state to itself representing that the state of the system will not

change with regard to cascading failures when it stops. Note,

the set of communities in each MC state provides an estimate

of the cascade size. Specifically, we assume that the number

of failed components at each state of the MC can be found by

adding up the sizes of the set of communities in that state.

To formulate the transition probabilities among the states in

the MC, we utilize the sizes of the communities, the number of

overlap/bridge nodes among communities, and the weight of

influences/interaction links between communities. As the first

step towards formulating the transition probabilities, we define

the contribution of a single node u ∈ Ci that has interaction

links to nodes in community Cj (i.e., node u is an overlap or

bridge node), in the propagation of failure from community

Ci to community Cj as

CFP (u) =

∑
v∈Cj ,j 6=i wu,v

∑
q∈LIG

wu,q

. (1)

In the context of various types of communities, in equation

(1) we have: (i) for the case of disjoint communities of directed

interaction graphs: wu,v is the weight of the interaction link

from o-bridge node u to i-bridge node v and wu,q is the weight
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Fig. 1. (a) Example of three disjoint communities. (b) Markov chain of
community structure with three disjoint communities shown in (a).

of the interaction link from o-bridge node u to node q, (ii) for

the case of disjoint communities of undirected graphs: wu,v

is the weight of the interaction link connecting bridge node

u to bridge node v and wu,q is the weight of the interaction

link connecting bridge node u to node q, and (iii) for the case

of overlapped communities of directed as well as undirected

graphs: wu,v is the weight of the interaction link connecting

overlap node u to overlap node v and wu,q is the weight of

the interaction link connecting overlap node u to node q. Note,

for all the above-discussed cases, node q can be a member of

any community including communities Ci and Cj .

In the next step towards formulating the transition proba-

bilities, we need to consider the cumulative effect of all the

overlap/bridge nodes among the communities. Specifically, the

contribution of: (i) all o-bridge nodes in community Ci in the

case of disjoint communities of directed graphs, (ii) all bridge

nodes in community Ci in the case of disjoint communities

of undirected graphs, and (iii) all overlap nodes in community

Ci in the case of overlapped communities of both directed

and undirected graphs; will be added up. For the case of

transitioning from a state with a single involved community

to a state with two involved communities we have:

p(({Ci}, 0) → ({Ci, Cj}, 0)) =

∑
z∈Ci

CFP (z)

|Ci|
, (2)

where |Ci| is the size of community Ci and p(({Ci}, 0) →
({Ci, Cj}, 0)) is the probability of transition from transient

state X(t) = ({Ci}, 0) to transient state X(t + 1) =

({Ci, Cj}, 0) with one new additional community. E.g., in the

MC of Fig. 1-b, contribution of o-bridge node f to failure

propagation in community C1 i.e. CFP (f) is 1/(1+1+6+6) =

1/14 and probability of transition from transient state ({C2}, 0)
to transient state ({C1, C2}, 0) is 1/(14× 3) = 1/42.

To generalize, the probability of transition from a

transient state ({Ci, Cj , · · · , Cr}, 0) to a transient state

({Ci, Cj , · · ·Cr, Cr+1}, 0) with one new additional commu-

nity can be defined as:

p(({Ci, Cj · · ·Cr}, 0) → ({Ci, Cj , · · · , Cr, Cr+1}, 0)) =
∑

z∈O{Ci,Cj,··· ,Cr}
CFP (z)

|{Ci, Cj , · · · , Cr}|
,

(3)

where O{Ci,Cj ,··· ,Cr} is the set of all o-bridge, bridge, or

overlap nodes of the set of communities {Ci, Cj , · · · , Cr},

which have interaction links to nodes in community Cr+1;

and |{Ci, Cj , · · · , Cr}| is the sum of sizes of all communities

in the set {Ci, Cj , · · · , Cr}. Note, for calculating the sum of

sizes of overlapped communities, repeated entries of overlap

components are counted only once.

The probability of transition from a transient state X(t) =
(S(t), 0) to its associated absorbing state X(t+ 1) = (S(t+
1), 1) (i.e., absorbing state with the same set of communities

as that of the transient state, i.e., S(t) = S(t+ 1)), describes

the probability of failure of non-overlap/non-bridge nodes

(i.e., nodes that belong to a single community). This type of

transition implies that failure of non-overlap/non-bridge nodes

of a community spreads failures to other components within

the community itself only and failures are contained within

involved communities. The probability of transition from

transient state X(t) = (S(t), 0) to its associated absorbing

state X(t + 1) = (S(t + 1), 1) will be the complement of

probabilities of transition to all other transient states from state

X(t). Finally, the only possible transition from an absorbing

state will be to itself, such that p((S(t), 1) → (S(t + 1), 1))
for S(t) = S(t+ 1) is one.

VI. RESULTS

In this section, we first introduce the cascade dataset

generated for the IEEE 118 bus system using MATPOWER

simulations. Then, we briefly discuss our interaction graphs

constructed using the influence-based and correlation-based

techniques. We also briefly discuss the community structures

identified in the interaction graphs using the Infomap disjoint

and Infomap overlap algorithms. More details of these results

can be observed in our previous studies in [4], [5]. Finally,

our main focus and discussion is on the characterization of

cascade sizes using our community-based MC.

A. Cascade Dataset

We used the IEEE 118 bus system with 118 buses, including

substations and generators, and 186 transmission lines. We

used MATPOWER [18] to simulate cascading failures of

transmission lines based on a quasi-static approach by solving

DC optimal power flow equations. The main mechanism of

line failures in the cascade process is due to the overload of



TABLE I
PROPERTIES OF THRESHOLDED INTERACTION GRAPHS [5]

Interaction
Graph IG

No. of
vertices
in LCC

No. of
edges

No. of
communities:

Infomap
Disjoint

No. of
communities:

Infomap
Overlap

H ≥ 0.6 143 1160 12 12

H ≥ 0.7 57 612 4 7

CR ≥ 0.7 59 636 5 5

the lines caused by the redistribution of power flows after

the occurrence of two or three initial random failures. We

generated around 16,000 cascade failure scenarios.

B. Interaction Graphs and Community Structures

The generated cascade dataset for IEEE 118 bus system was

used to construct the influence-based H and correlation-based

CR interaction graphs, discussed in Section III. Each inter-

action graph had 186 vertices representing the transmission

lines of the IEEE 118 bus system. We observed 32,504 and

34,396 number of interaction links in the H and CR graphs

respectively. Both H and CR are dense graphs; however, nu-

merous interactions have insignificant weights. Including the

contribution of such interaction links in analyzing community

structures reduces the quality of identified communities as

many such interactions act as noise [19]. Thus, we thresholded

the graphs such that interaction links with stronger influences

are the ones considered during community detection [20].

As the thresholded graphs can create disconnected graphs,

our focus is on the Largest Connected Components (LCC)

of the thresholded graphs. We observed the threshold of 0.6

to be the most qualitative for identifying communities in

H interaction graph. To make a comparable case for the

H and CR interaction graphs, we considered the threshold

of 0.7, where the threshold yielded an LCC with 57 and

59 components respectively. Then, we applied the Infomap

disjoint and Infomap overlap community detection algorithms,

discussed in Section IV, over the LCC of the thresholded

interaction graphs. Based on the threshold as well as the

type of interaction graphs, the properties of the graphs differ

as shown in Table I. Table II presents more details on the

structure of the communities and the overlap and bridge nodes.

C. Distribution of Cascade Sizes

To characterize the contribution of community structures in

the distribution of cascade sizes, we use the MC formulation

discussed in Section V. We numerically calculate the average

steady state distribution of the MC as well as cascade size

distribution for various initial states of the system depending

on where the failures started.

First, we look at the steady state distribution of the MC

for the average case when the cascade can start from any

community with equal probability. We evaluate this probability

distribution for three interaction graphs including interaction

graphs based on H ≥ 0.6, H ≥ 0.7, and CR ≥ 0.7. These

results are presented in Fig. 2. The y-axis in Fig. 2 shows the

log scaled distribution of the probability of occurrences with

respect to various cascade sizes in the x-axis. The range of
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Fig. 2. Log scaled probabilities of cascade sizes when cascade has equal
probability to start from any community, for communities identified using
Infomap disjoint (in red) and Infomap overlap (in blue) over the interaction
graph of (a) H ≥ 0.6, (b) H ≥ 0.7, and (c) CR ≥ 0.7.

TABLE II
COMMUNITY AND OVERLAP/BRIDGE SIZES FOR H ≥ 0.6

Community
Infomap Disjoint Infomap Overlap
No. of
nodes

No. of
bridges

No. of
nodes

No. of
overlaps

1 31 14 32 13

2 17 7 17 7

3 16 5 18 6

4 21 11 29 16

5 26 12 28 14

6 7 3 7 3

7 3 3 6 6

8 2 1 3 3

9 6 3 3 1

10 5 5 8 5

11 6 6 6 6

12 3 3 5 4

cascade sizes in the x-axis shown in Fig. 2 correspond to the

LCC of the thresholded graphs shown in Table I. Based on

these results, we observe that small cascade sizes are more

probable compared to large cascade sizes. For example, in

Fig. 2-a for H ≥ 0.6, the probability of occurrence of cascade

size in the range of 2 to 32 failures is 0.83 (seen as 100 due

to log scale), while the probability of occurrence of cascade

size in the range of 129 to 143 is small. These results are

in agreement with the cascade size distributions found based

on other historical and simulation data in [2]. This power-law

based distribution of cascade sizes suggests that large cascade

sizes are rare but their occurrence cannot be neglected. These

large cascade sizes can be attributed to failure propagation

caused by the size of overlap/bridge nodes as well as the

strength of interaction of these nodes with other communities.

Next, we look at the cascade size distribution conditioned

on the community that failures started in. In Fig. 3, for

communities identified using Infomap disjoint for H ≥ 0.6,

we observe that each community has a distinct role in the
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Fig. 4. Log scaled probabilities of cascade sizes induced by failure of one
component belonging to different communities, for communities identified
using Infomap disjoint over the interaction graph of H ≥ 0.6.

probability of occurrence of various cascade sizes. For ex-

ample, the probability of occurrence of large cascade size of

range 129 to 143 is highest for community 11 compared to

other communities. This can be attributed to the large number

of bridge nodes compared to the community size and the

strong weight of the interaction links of the bridge nodes.

As seen in Table II, community 11 has 6 nodes and all 6

nodes are bridge nodes, as such failures in community 11

has a very high likelihood of spreading to other communities.

We observe similar results for other interaction graphs with

different thresholds and community structures as well.

To normalize the effect of the size of the initial community

on cascade size, we also look at the number of ultimate failures

per node failure in the initial community. As shown in Fig.4,

for both Infomap disjoint and Infomap overlap, we observe

that communities 1 to 5 induce smaller cascade sizes (from

1 to 10) shown in the expanded figure on the top, whereas

communities 6 to 12 induce larger cascade sizes (from 1 to 72)

shown in the main figure. This behavior is due to the larger size

and smaller number of overlap/bridge nodes for communities

1 to 5 and the vice versa situation for communities 6 to

12, as shown in Table II. Thus, the contribution of nodes in

smaller sized communities in causing large cascades are more

prominent compared to nodes in larger sized communities.

VII. CONCLUSION

In this paper, we developed a Markov chain model to track

the evolution of the cascading failures through communities

embedded in interaction graphs. We discussed that the com-

munities in interaction graphs can reveal important properties

related to cascading failures as they tend to trap failures. We

used this property and showed that the probability distribution

of cascade sizes exhibited power-law behavior as observed

in previous studies and historical data. This suggests that the

community structures can be used to predict cascade sizes and

estimate the risk of large blackouts.
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