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Abstract—The denial-of-service (DoS) attack is a very common
type of cyber attack that can affect critical cyber-physical
systems, such as smart grids, by hampering the monitoring and
control of the system, for example, creating unavailability of data
from the attacked zone. While developing countermeasures can
help reduce such risks, it is essential to develop techniques to
recover from such scenarios if they occur by estimating the state
of the system. Considering the continuous data-stream from the
PMUs as time series, this work exploits the bus-to-bus cross-
correlations to estimate the state of the system’s components
under attack using the PMU data of the rest of the buses. By
applying this technique, the state of the power system can be
estimated under various DoS attack sizes with great accuracy.
The estimation accuracy in terms of the mean squared error
(MSE) has been used to identify the relative vulnerability of the
PMUs of the grid and the most vulnerable time for the DoS
attack.

Index Terms—Cyber attack, smart grid security, data-driven
dynamic state estimation, state correlations, time series.

I. INTRODUCTION

Smart grids are large and complex infrastructures consisting
of tightly coupled communication and power systems. The
communication system is vital for the flow of information
throughout the system, which enables the control mechanisms
to monitor and make decisions based on the states of the
system. Attacks on the communication system can hinder the
control system from taking appropriate decisions and actions,
consequently affecting the reliability and efficiency of the
system. Communication systems of the power grids are prone
to cyber-attacks [1]. One example of the key challenges that
can arise due to the cyber attacks is the unavailability of
the critical power system’s state data (i.e., lack of observ-
ability and situational awareness for portions of the power
system), for instance, due to denial of service (DoS) attacks
on parts of the communication system. In addition to cyber-
security measures that can help prevent such scenarios, it is
important to develop new complementary mechanisms that
can help with dealing with such challenges (i.e., improving
the observability of the state of the power system) if such
cases occur. Therefore, it is crucial to detect cyber attacks in
power grids and estimate the state of the system as accurate as
possible to recover from the attacks. Estimation of the smart
grid states under cyber attack may assist the control center to
work properly even when some part of the system is under
cyber attack.

State estimation of the power system has been in use
for many years. Particularly, after the renowned blackout of

1965 in the United States, state estimation received significant
attention. Since then numerous articles have been published on
power system state estimations, it’s mathematical modeling,
algorithms, numerical aspects, observability, bad data detec-
tion, and the implementation issues. However, most of the
conventional state estimations rely heavily on power system
models and do not exploit the abundant state data available
in current power grids. The availability of large volume of
data collected and available in today’s power systems (due to
the large deployment of monitoring sensors such as phasor
measurement units-PMUs) has motivated emerging methods
for state estimation based on data-driven approaches.

State estimations for power systems can be classified into
static state estimation (SSE) and dynamic or forecasting-aided
state estimations (DSE or FASE) [2]. The traditional state
estimations in power systems are mainly static, which implies
that for the estimation of the state of the system at the
time instant t, only measurements at the time instant t are
used [3]. The SSE was popular in the literature for the past
four decades because there were only non-synchronized, low
sampling rate (typically one measurement in a few minutes)
measurement data available at this period. Although SSE has
lower computational complexity, it is not very suitable for real-
time monitoring of power grids as the estimation updates in
every few minutes [2].

The motivation for evaluating the states of a power system
in real-time comes from the insufficiency of the SSE methods
to assist the control mechanisms in real-time decision making.
The SSE Methods are based on the steady-state assumption
of the power system, however, steady-state analysis will not
provide an accurate estimate of power system states and op-
erations due to dynamics of the system and random variations
in load and generation. Specially in today’s grids, distributed
energy resources (DERs) can introduce a huge uncertainty in
the generation side and thereby causing abrupt changes in the
bus voltage phasor [4]. The uncertainty and complexity in the
load side have also been increased in recent time due to the
use of smart and IOT devices, electrical vehicles, and other
modern electrical devices [5]. For the proper operation and
control of such stochastic and fast-changing power systems,
it is necessary to track the states of the system in real-time.
DSE has brought effective changes in the case of oscillation
monitoring for system stability and hierarchical decentralized
control and enhanced dependability and reliability of the
protection systems [5]. Moreover, the increasing threat of



different types of cyber-physical attacks on the modern power
system demands a real-time assessment of the security issues,
which can be implemented with the help of DSE.

In this paper, the dynamic states of components under DoS
attacks are estimated using a data-driven approach based on
the correlations among the state of attacked components and
the rest of the components in the system just before the DoS
attack. However, this work is not the same as the power system
state estimation in a traditional sense rather it can be called
’state estimation’ in the sense that we are trying to estimate
the states (bus voltage magnitudes and angles) of the power
system during DoS attack. Although we have not used any
dynamic model of power system explicitly in this work, our
technique estimates the states in real-time and can capture any
dynamic characteristics of the power system that DSE can
capture. In this paper, it has been shown that, by exploiting
the correlations among the PMU time-series, it is possible to
estimate the time-series data for PMUs under DoS attack even
when the attack size is considerably large. The most vulnerable
location of the power system and the most vulnerable time in
the day for DoS attack have been identified in terms of the
mean-squared error (MSE).

II. LITERATURE REVIEW

In this section, we briefly review the data-driven state
estimation technique for power systems and discuss them in
terms of the accuracy, computational efficiency, and robust-
ness, as well as their variants and modifications to withstand
the challenges of the modern smart power systems. We will
also discuss some of the recent efforts in the power system’s
state estimation under cyber attacks with a focus on attacks
that can lead to unobservability in the system.

The phrase state estimation entered into the power system
literature from the control system theory and first introduced
by Schweppe [3], [6], [7]. Due to the less complex nature of
the power grids back then, the static state estimation (SSE)
was considered to be sufficient for monitoring and mainte-
nance of the power system. The dynamic state estimation
(DSE) in the power systems was introduced by Debs [8]
in 1970. Since then one of the most prevalent methods for
the dynamic state estimation is the Kalman filtering tech-
niques [9], [10], [11] with linear models for the systems and
Gaussian assumption for the noise. Filho et al. [12], [13]
presented the development and variations of different dynamic
and forecasting-aided state estimation techniques along with
the implementation issues in power systems. Moreover, the
widespread use of PMUs in smart grids added new dimensions
in dynamic state estimation. Several authors incorporate the
PMU data into state estimation framework to achieve a fast,
more accurate and, high-resolution estimate of the states [14],
[15], [16]. Recently, the IEEE Task Force on Power System
Dynamic State and Parameter Estimation in [5] described
the state-of-the-art of the dynamic state estimation and also
discussed the future scopes.

Recently, various signal processing and machine learning
based approaches are also considered for dynamic state es-

timations for power systems. Chackhchoukh et al. [17] used
the Auto-regressive (AR) model to analyze the time series
associated with a single PMU and Vector Auto-regressive
(VAR) model to analyze the correlations and inter-dependency
of the set of PMUs in the grid. Hassanzadeh et al. [4]
used time auto-correlations in the AR model and bus-to-bus
correlations in VAR model to estimate the states in different
cases: grids with different electrical connectivity, centrality,
and node significance patterns, stochastic and intermittent
generation patterns and under the loss of observability. This
paper also discusses the suitability of the models (AR and
VAR) in different situations. Kumari and Bhattacharyya [18]
proposed a completely data-driven DSE method using Gaus-
sian Process (GP) for the function approximation. Zhang et
al. [19] proposed a real-time state estimation technique using
deep unrolled neural network.

Moreover, a considerable amount of work focused on differ-
ent types of cyber attacks in power systems: their models, ef-
fects on the smart grid, detection techniques for different kind
of attacks and their countermeasures. For instance, Beasley et
al. [20] discussed the popular cyber attacks and their effects
on the state estimations along with their countermeasures. Liu
et al. [21] provided a details description of the DoS attack.
Kurt et al. [22] described two types of DoS attacks: one in
the form of the lack of availability of meter measurements
and the other in the form of reduction of the signal-to-noise-
ratio (SNR) of the PMU signal by jamming the channel with
another signal. Although the estimation of the power system
dynamic states under the cyber attacks is comparatively a
newer topic to address, in the last few years, it has been
the focus of many researchers. For instance, Wang et al. [23]
proposed a data-driven approach to detect and classify cyber
attacks on PMU measurements using density-based spatial
clustering and also proposes a data recovery technique for
the compromised PMU channels. Mosbah and El-Hawary [24]
illustrates a neural network- based method for state estimation
under communication failure in which the authors optimized
the neural network parameters by stochastic fractal search
method. Gu and Jirutitijaroen [25] showed a technique for
dynamic state estimation in which the load of the attacked
region is forecast at the first step by the time-forward Krigging
method using the load profiles outside the attacked region and
then the states inside the attack region are estimated using the
traditional power flow model. Moreover, a few works address
physical failures and attacks along with cyber attacks. For
instance, Soltan et al. [26] developed a linear algebra and
graph theory-based approach to detect the line failure and to
estimate the voltage angle of the buses inside the attack area
from the observations outside the attack area. Hossain and
Rahnamay-Naeini [27] addressed a similar problem by a data-
driven approach with linear Minimum Mean Squared Error
(MMSE) estimation and used the estimated state to detect the
line failures.

The work presented in the current paper is also a data-driven
method for DSE in power systems under the DoS attacks
based on the correlation between states similar to [4] and [17].



Instead of directly using the states, in our method, we have
used the state correlations to build a relation among the time
derivatives of the observable and unobservable states. Similar
to [22], we assume that DoS attacks will cause unobservability
of the states in the power system.

III. SYSTEM AND ATTACK MODELS

A. Power System Model

In this paper, the power transmission system has been
modeled as the sets of buses, transmission lines (branches)
and their interconnections. Let, B be the set of all the buses
in a N bus system; therefore |B| = N , where, |.| denotes the
cardinality of the set. We assume that there are PMUs in all
the buses. Therefore, the measurements of all the bus voltage
phasors are collected by the PMUs in a suitable sampling rate
and sent to the control center. This assumption may not be
realistic in today’s smart grids as the PMUs are generally
optimally placed [28] to minimize the cost and maximize the
observability. Designing and developing data-driven methods
similar to the one discussed in this paper for models with
optimally placed PMUs is a prospective future work.

B. DoS Attack Model

In this paper, we assume DoS attacks on the communication
system of the power grid result in unavailability of the data
(time series of measured parameters) from a subset of the
PMUs associated with the buses, B. Let, A ⊂ B be the set of
buses, which their associated PMUs are under the DoS attack
and |A| = M . Let, xk(t) denotes any electrical attribute (e.g.,
voltage or phase angels) from a PMU at time t, where, k ∈ B.
If a DoS attack occurs at time ta, then, we model the attack
by assuming unobservability of xk(t) for t > ta.

IV. METHOD

The goal of the estimation method in this paper is to
estimate the state of the components, which their PMUs are
under attack, from the state of the rest of the components
collected by the rest of the PMUs. Specifically, we assume
that the time series of the states of electrical attributes xi(t),
where, i ∈ B\A is available except for buses in the attack
set, A. In the estimation method, we denote the time series of
unknown (unobservable) buses for t > ta due to DoS attack
by yj(t), where, j ∈ A.

We define the relation between the known and unknown
states as follows:

ẏj(t) =

N−M∑
i=1

wjiẋi(t). (1)

For M DoS attacks on M buses, equation (1) will result in
a system of equations as follows:

ẏ(t) = Wẋ(t), (2)

where ẏ(t) and ẋ(t) are vectors with elements representing the
time derivative of the time series corresponding to unknown
and known buses, respectively.

Here, the time derivative of a state variable under DoS attack
has been estimated as the weighted sum of the time derivatives
of the rest of the parameters. The weights come from the
correlations between any state outside the attack zone and the
attacked state. The rationale behind estimating the time deriva-
tive of the state first instead of directly estimating the state is:
we observed that although the states vary significantly in terms
of the actual values, there exist very strong correlations among
several states in their changing pattern with time.

The matrix W , contains the bus-to-bus correlation of the
electrical attributes among the buses under DoS attack and
the buses that are not under the attack. Any element of W is
represented as:

wji = earji , (3)

where rji is the correlation coefficient between yj(t) and
xi(t) for the last tc moments before the DoS attack:

rji =

∫ ta

ta−tc

xi(t)yj(t)dt. (4)

Since we have considered the DoS attack to be on the
communication layer of the smart grid, therefore, we are
assuming no physical attack or topology changes. Moreover,
we consider the correlation among the PMUs just before the
DoS attack happens. As a result, the correlation among the
PMUs before the attack and after the attack can be considered
unchanged. It is true that if the DoS attack continues for a
long period, the estimation accuracy decreases because the
correlation among the PMUs changes within this period due
to the change in loads. Besides, if any physical attack is
masked by the DoS attack, our technique may not perform
well because the correlation among the PMUs will be changed
due to the physical attack.

The reason behind taking the exponential of the correlation
coefficients is to emphasize the highly correlated buses and
to de-emphasize the barely correlated buses. However, the
set of the weights also depends on the scalar parameter, a.
In this paper, the value of a is empirically selected and the
effect of choosing different values for parameter a has been
illustrated in the simulation and result section. However, the
determination of the value of a from the topology of the grid
and system properties directly or indirectly can be prospective
future work.

For the discrete-time realization of the continuous-time time
series, the derivative of a time series at t, can be considered as
the backward difference system: ḟ(t) = ft − ft−1, where, ft
is the sampled value of the time series f at time t, and ft−1

is the previous sampled value. According to this notion, the
equation (2) can be written in the following form:

y
t
− y

t−1
= W (xt − xt−1). (5)

The sampled value of the attacked states at the moment of
the attack (ta), denoted by y

ta
can be considered as the initial

value and assumed to be known. During the attack interval the
values are updated by:

y
t
= y

t−1
+W (xt − xt−1), t > ta. (6)



Fig. 1: Relative correlations among the PMUs of the physically
connected buses in terms of voltage angles for IEEE 118 bus
case.

V. SIMULATIONS AND RESULTS

In this paper, the simulations have been run on the IEEE
14 bus system [29] and IEEE 118 bus system [30]. The
load patterns are collected from the New York Independent
System Operator (NYISO) [31]. The NYISO consists of eleven
regions. The load profiles are normalized and added with the
default constant loads of the eleven load buses of the IEEE
14 bus case to generate the load profile time series. For the
IEEE 118 bus case, we do not have enough load data since
there are 91 load buses in this system. Therefore, the available
data for the different regions are combined to synthesize load
profiles for those 91 load buses similar to [25]. By combining
three different regions to synthesize one new load profile
by taking the average, it is possible to create

(
11
3

)
= 165

such combinations. Out of the 165 profiles, the first 91 are
considered as the load profile of the 91 load buses of IEEE 118
bus system. In the NYISO data, the load is measured in every
five minutes. However, these data are linearly interpolated to
generate time series of 0.033Hz sampling rate. MATPOWER
6.0 [32] has been used to simulate the power flow for both
of the IEEE 14 bus and 118 bus case. The details of the
simulation have been discussed in the following subsections:

A. Correlation among PMU time series
As discussed in Section IV, the time-series data from the

PMUs under DoS attack are estimated from the correlations
among the PMU data, which arises from the physical dynamics
of the power system. Fig. 1 illustrates the correlations among
the voltage angle PMU data for the IEEE 118 bus case. From
the figure, it is clear that some of the PMU data have very
strong correlations among them. In this figure, correlations
have been shown only for the buses, which have physical
connections among themselves. However, PMUs installed in
the buses having no connections may still have correlations
due to the physics of the electricity and power flows.

B. Estimation of PMU time series under single and multiple
DoS Attack

Fig. 2a illustrates the estimation of the voltage angle time
series of bus 86 of IEEE 118 bus system when only the
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(a) Bus 86 for IEEE 118 bus system.
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(b) Bus 7 for IEEE 14 bus system.

Fig. 2: Estimation of bus voltage angle under single DoS
attack.

PMU associated with that bus is under DoS attack. The red
curve represents the estimated time series based on the method
presented in Section IV and the blue line represents the ground
truth, while the DoS attack occurred at ta, is represented by
the black vertical line. The estimated time series seems to
track the ground truth quite accurately. The mean squared
error, in this case, is 8.8631 × 10−4 degree. The value of a
is empirically selected as 300. However, the accuracy of the
estimation depends on the proper choice of a, which has been
discussed later in this section. Fig. 2b shows similar results
for bus 7 for IEEE 14 bus system. The estimation of voltage
magnitude time series has been shown in Fig. 3.
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Fig. 3: Estimation of bus voltage magnitude under DoS attack
at Bus 86 for IEEE 118 bus system.

The accuracy of the estimation of a PMU data deteriorates
when a larger number of nearby PMUs go under DoS attack.
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Fig. 4: Estimation of bus voltage angle under DoS attack at
Bus 86 for IEEE 118 bus system for multiple attacks.

Fig. 4 illustrates the estimation of voltage angle at the PMU
associated with bus number 86, respectively, for the failure
of 2, 8, 16 and 32 number of PMUs including the PMU
associated with bus 86. It is clear that although the accuracy
of the estimation decreases with the increase in the number of
DoS attacks, this method can estimate the PMU data even for
a large number of DoS attacks. Fig. 5 illustrates the relation
between the Mean squared error and the number of PMUs
under the DoS attack for three types of distribution of attacks:
uniform, clustered and inhibition.

C. Most vulnerable Combination of Attack
The most vulnerable PMU for the initial DoS attack from

the attackers’ point of view can be identified on the basis of the
largest mean squared error (MSE) of estimation of the voltage
angle under the single DoS attack. The relative vulnerability
of the PMUs of IEEE 118 bus system has been represented
in Fig. 6 by the node colors. For example, from the attackers
perspective, it is possible to create more unobservability in the
power system by launching a DoS attack on a red node (e.g.
node 82) in Fig. 6.

D. Parameter a values
The choice of the parameter a has a significant impact on

the accuracy of the estimator. Fig. 7 illustrates the effect of
parameter a on the estimation. In this paper, we have kept
the value of the parameter a fixed for all buses. From Fig.
7 it can be inferred that a value between 200 and 500 can
be a good choice. When the bus voltage to be estimated has
strong correlations with only a few numbers of bus voltages,
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Fig. 6: Relative vulnerability of the PMU locations for initial
DoS attack on the basis of MSE for IEEE 118 bus system.

then larger values of a work better (the weights for the barely-
correlated buses would be negligible compared to the weights
for the strongly correlated buses). However, a small value of
parameter a would work better, when that bus has significant
correlations with many buses.

E. Most vulnerable time for the DoS attack
The moment when the DoS attack initiates also impacts the

estimation accuracy. This is because the correlations among
the bus parameters vary in time. This variation comes from
the variation in the load profile at the load buses throughout
the day. Fig. 8 represents the MSE in the cases of DoS attacks
at different times of the day. The two profiles are from two
different days, however, show the same pattern. It can be
inferred from the two figures that in terms of the MSE, the
most vulnerable time for the initiation of the attack is during
the end of the office hours when the load fluctuation is very
high. From the attackers perspective, the highest amount of
unobservability can be created by initiating DoS attack during
this period.

VI. CONCLUSION

This paper describes a simple, easy-to-implement, and ef-
ficient algorithm to estimate the dynamic states of a power
system’s components inside the DoS attack zone from the
dynamic states of components outside the attack zone by
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Fig. 7: The effect of the parameter a on the estimation of bus
voltage angles in IEEE 118 bus system.
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Fig. 8: The effect of the attack time on the estimation of bus
voltage angles in IEEE 118 bus system.

using the correlations among the states. The accuracy of the
estimation is compared by means of the mean squared error
(MSE) between the estimated time series and the ground truth
for the DoS duration. The MSEs for the different number of
DoS attacks have been compared. The relative vulnerability
of the locations of the PMUs and the relative vulnerability
of the time of the day from the attackers’ perspective have
been analyzed on the basis of the calculated MSEs. Extending
this technique for estimating the states of the grid under
topology change and cyber-physical attack under optimum
PMU placement can be considered as a prospective future
work.
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