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Abstract—An important property of cascading failures in
power grids is that, in addition to the physical topology of the
system, the physics of the power flow and functional dependencies
among components largely affect the spatial distribution and
propagation of failures. Various techniques have been proposed
to capture the interactions among the components in the models
of power grids, beyond the physical topology, during cascading
failures. In this paper, we create the logical network of inter-
actions among components atop the physical topology of the
system using influence-based and correlation-based techniques.
We will discuss that different techniques to derive the graph of
interactions and various power grid operating settings can lead
to different analyses of interactions and cascading behavior. We
will further introduce a new measure based on the overlapped
community structures in the graph of interactions to identify
critical components in cascade of failures, whose protection can
help in containing failures within a community and prevent the
propagation of failures to the whole power grid. We have verified
the important role of the identified critical components in our
dataset of cascading failures based on power system simulations.

I. INTRODUCTION

Large blackouts, such as the Northeast US blackout of 2003,
result from cascade of failures in the transmission network of
the power grid. Large number of factors and their complex
interactions contribute in the cascading phenomenon. Inten-
sive research efforts have been focused on understanding the
underlying interactions in cascades, which can, for instance,
help in predicting the propagation path of failures and the
critical/vulnerable components in the power grid.

The physical topology of the power grids has been the focus
of many studies in modeling and analyzing cascading failures,
using graph theoretic [1], percolation theory [2] and epidemic
models [3]. However, historical data and studies of the power
grids have shown that the physical topology is not adequate in
capturing the interactions among the components in the models
of power grids. Real data confirm that failure of a critical
transmission line can overload transmission lines that are 100
miles away and not physically connected together. Hence,
the propagation of failures in the power grid is not local on
its physical topology, instead there are influences/interactions
among the components at distance due to physics of electricity
governing the power flow dynamics as well as other functional
dependencies controlled by the automated systems/operators.
A study in [4] shows lack of strong connection between the
physical topology properties and failure propagation process
in the power grid. As such, instead of the physical topology,

many recent studies have been focused on extracting and mod-
eling the underlying logical graph of interactions for modeling
power grids using data-driven techniques, such as influence-
based and correlation-based approaches based on historical
and simulation data [5]-[7]. Moreover, various studies have
been conducted on the graph of interactions modeling power
grids to identify critical components in power grids as well as
structures embedded in the interactions [7], [8].

In light of the above, the study presented in this paper has
two folds. First, we use two techniques in extracting the logical
graph of interactions among the transmission lines of the
power grid, specifically influence-based and correlation-based
approaches, using a cascade dataset generated by our power-
system simulations in MATPOWER [9]. Although failures of
transmission lines, generators and cyber (control, monitoring,
computation and communication) elements all contribute in the
cascading failures, we focus on transmission line failures and
their interactions due to their significant role in the cascade
process (when the power flow redistributes due to failures
it can cause transmission line overloads, which is a key
mechanism in propagation of failures). A similar approach can
be applied to other components and their interactions in the
cascade. We will show that the resulted graph of interactions
depends on the operating settings (e.g., loading level of the
power grid) as well as the approach used to extract the
interactions. In other words, we conjecture that each approach
and each dataset (for different operating settings) will shed
light on specific interactions in cascading failures.

Second, we study the structure of the derived graphs of inter-
actions using a community detection technique. We focus on
overlapped communities formed on the graph of interactions
and use it to introduce a new centrality measure to specify
the criticality of the components (transmission lines) in the
cascade process. The main idea behind this new measure is
that communities formed on interactions reveal the group of
components that are likely to contain the failures within them-
selves during cascade (due to tight influences/interactions);
however, if a component belongs to multiple communities
(having tight interactions and influences with multiple groups
of components) then it will be critical in the cascade process as
it serves as a gateway to spread failures from one community
to another. Identifying and protecting such components can
help containing the failures within one community and prevent
spreads over the whole system. We will verify the criticality
of the identified components using our cascade dataset.



II. RELATED WORK

In this section, we will review examples of cascade studies
in power grids with a focus on extracting and analyzing the
logical interactions among the components of the system.

A. Logical Graph of Interactions, Influences, and Correlations

To reveal the underlying interactions, influences and state
correlations among various components of the power grid, var-
ious techniques including data-driven, statistical analysis and
electrical interactions, based on Kirchhoff’s and Ohm’s laws
have been used. For instance, Hines et al. in [10] introduced
the line interaction graph, where vertices are the transmission
lines in the power grid and the edges in the graph are inferred
from the influences among the lines based on large amount
of cascade data, electrical interaction considerations based
on Line Outage Distribution Factors (LODFs) [11] and n-k
line contingencies testing. Specifically, line outages and their
orders were considered to statistically analyze the empirical
probabilities of ordered pairs of lines in cascade data. They
extended the study in [6], introducing a more systematic
approach in analyzing cascade data by defining generations of
failures within cascades and finding the interactions based on
the influence model [12]. The characterized influences specify
how failure in one line will affect the likelihood of failure in
other transmission lines. In [13], Dobson et al. used historical
transmission line outage data to form the network topology for
statistical characterization of spread of failures in the power
grid and evaluated the properties of generations in cascade data
to define components’ distances based on the formed topology.

In [8], Luo et al. formed the graph of interactions for
transmission lines by introducing cascading failure chain and
grouping failures in stages based on their order in the cascade
to statistically define the interactions among the lines based
on frequency and order of their appearance in cascade data. In
[14], the authors used the cascade data and generations in each
cascade to calculate the empirical probability of failure of a
component causing failure in another component to define the
graph of interactions and used it to find mitigation strategies
by weakening interactions between key lines in the power grid.

Another approach in [7] forms the graph of interactions
based on correlations among the failure/functional status of
transmission lines in the cascade data to construct a network
of positively correlated transmission lines. Also, electrical
interactions among the components of a power grid can define
the logical interactions in the cascade process. For instance,
LODFs [11] that can measure the impact of a change in a
line’s status on the flows on other lines in the system can be
used to define interaction links among transmission lines [10].

B. Analysis of Graph of Interactions

The graph of interactions has been used for various analysis
in different studies. For instance, [6], [8] and [15] used the
logical graph of interactions to identify critical transmission
lines based on the interaction graph properties. In addition,
some works are focused on predicting the distribution, path or

size of the cascade based on the structures and properties in
the graph of interactions [7].

III. TECHNIQUES TO FORM GRAPH OF INTERACTIONS

We briefly review the influence- [6] and correlation-based
[7] approaches to form the logical graph of interactions.

A. Influence-based Approach to Graph of Interactions

A combination of the branching process and influence
model was used to derive the graph of interactions in [6]. First,
strength of influences among the failures were defined, using
the concept of generation in the branching process, where each
generation of failures produces some dependent failures with
a specific rate. However, to discriminate component outages
resulting from a particular outage, they defined λi,m, which
specifies the rate of failures (mean number of outages) in the
next generation, m, for the outage of component i based on
Poisson distribution. Conditional failure probability of compo-
nent j, given failure of component i was defined as g[j|i] and
estimated by statistical analysis of number of times component
j failed in the generation after component i failure (for details
refer to [6]). The parameters of the Poisson distribution for
failure rates and conditional probability of failures for pairs
of components was estimated using simulation-based cascade
data. Next, to characterize the influences that a component
j receives from all other components, the influence model
[12] was considered in which the summation of the influences
received by a component should add up to 1. The propagation
rates and conditional failure probabilities g, were combined
to form an influence matrix H, which gives an overall status
of the influences among the components. Specifically, the i, j
element of matrix H is defined as 1− e−λig[j|i] for i 6= j and
zero otherwise. The matrix H can be viewed as a weighted
and directed graph of influences among components. For
simplicity, we ignore the direction of links in our analyses.

B. Correlation-Based Approach to Graph of Interactions

While, the influence-based graph of interactions is formed
based on conditional probabilities and failure propagation rates
over cascade data grouped into generations, the correlation-
based approach simply considers the pairwise correlation be-
tween component failures in cascades as done in [7] to define
the graph of interactions. The dependance between failures are
captured in the correlation matrix CR, which its i, j element is
the Pearson correlation coefficient between the failure statuses
of components i and j. This will result in a symmetric matrix
and an undirected weighted graph, where the weights represent
the correlation value among the components.

IV. INTERACTION STRUCTURES AND CRITICALITY

Studies in network science have shown that communities
play important roles in defining the propagation behaviors
in networks [16]. Particularly, the propagations tend to stay
within communities due to tight internal interactions and
weak external interactions. In this paper, we particularly focus
on overlapped community structures in the interaction graph



of the power grid as we believe they can provide a new
perspective in defining the key players in the cascade process.
Here, we review the community detection algorithm used in
this paper and introduce a new centrality measure based on
the community structure to identify critical components.

A. Overlapping Communities in Graphs of Interactions

We adopt the weighted, overlapped community detection
algorithm presented in [17] (with minor modifications) to char-
acterize the community structure in the graph of interactions.
In the interaction graph, let C = {C1, C2, ......, Cn} denote the
set of communities, where n is the number of communities.
Since, communities are overlapped, Ci ∩ Cj 6= ∅ for some of
the i and j pairs of communities. This community detection
uses the belonging degree and conductance as explained next.

1) Belonging Degree: The set of neighbors and the degree
for node i is denoted by Ni and Di, respectively. The degree
of node i is defined as Di =

∑
j∈Ni

wij , where wij is the
weight of the link from node i to node j. Thus, the belonging
degree of node i to a community Ck is defined as B(i, Ck) =
(
∑
j∈Ck

wij)/Di.
2) Conductance: The conductance φCk

of a community
Ck ∈ C is defined as φCk

= cut(Ck, G\Ck)/wCk
, where

cut(Ck, G\Ck) denotes the sum of the weights of edges
adjacent to the nodes in the community except the edges inside
the community itself and wCk

denotes the sum of the weights
of all the edges connected to the nodes in the community.
Smaller values of conductance for communities are preferred.

The community detection algorithm presented in [17] is
shown in Algorithm 1 with minor modifications to update
the conductance as in line 8 and to remove the analyzed
neighbors from the neighboring set as in line 9 and 11 thus,
analyzing all neighbors of an initially identified community to
either append/skip neighboring nodes. In this algorithm, the
edges within community C are denoted by Ec. While, the
appending process of a node to a community is different from
the algorithm presented in [17], the identified communities
are in agreement with the concept of tight interactions within
communities and weak interactions outside communities.

B. A New Community-based Centrality Measure

The overlapped community structure in the graph of in-
teractions reveals new players in the cascade process that
cannot be identified using traditional centrality measures such
as closeness, betweenness, eigenvector, and more [18]. These
community structures are more likely to retain cascades in-
side each community. A component belonging to multiple
communities (having tight interactions and correlations with
multiple groups of components) serves as a gateway to spread
failures from one community to another and thus is critical.
Based on this concept, we propose a novel community-based
centrality measure. The main idea is that nodes belonging
to multiple communities are more important; however, there
might be cases that a node belongs to multiple communities
but the communities do not have a central role in propagation
of failures themselves. To capture both of these factors, we

Algorithm 1 Community Detection Algorithm based on [17]
Input: Graph G = (V,E)
Output: Overlapped Communities C

1: Initialize: C = ∅
2: while E 6= ∅ do
3: C = {i, j} where e(i, j) = argmax

(u,v)∈E
wij

4: while Nc 6= ∅ do
5: C ′ = C ∪ argmax

w∈Nc

B(w, c)

6: if Φ(C ′) < Φ(C) then
7: C = C ′

8: Φ(C) = Φ(C ′)
9: Nc = Nc\C

10: else
11: Nc = Nc\C
12: end if
13: end while
14: E = E\Ec
15: C = C ∪ C
16: end while

first create an augmented graph of communities to define the
importance of communities in the network and then add the
importance of communities for the nodes (nodes belonging to
multiple communities get the importance measure from all).

The set of communities C found in Section IV-A is used to
create an augmented graph AG = (C,E), where C represents
the set of communities and E represents connections due to
common links/nodes between communities. The common link
eij has node i in community Cs at one end and node j
in community Cr at the other end, while s 6= r. Similarly,
a common node i belongs to both communities Cs and
Cr. Next, we consider link weights among the nodes in
AG to represent the strength of overlap among communities.
Specifically, if |Ci ∩ Cj | 6= ∅, we consider a weight inversely
proportional to the overlap ratio (OR) between communities
as OR{Ci,Cj} = |Ci ∩ Cj |/|Ci ∪ Cj |, where |Ci ∩ Cj | and
|Ci ∪ Cj | denote the number of overlapped nodes and the
total number of unique nodes between communities Ci and
Cj , respectively. In other words, communities with larger
overlap ratios will be connected with smaller link weights (i.e.,
suggesting a smaller distance between the communities). The
rest of the communities with no overlaps are assigned equal
larger weights for their links than any overlapped communities
(i.e., suggesting a larger distance between the communities).
The weighted AG is then used to find closeness centrality
(CL) for each community in the network of interactions.
Finally, we define the community-based centrality of the node
i as Ii =

∑
ksuch thati∈Ck

CLk, where CLk is the closeness
centrality of community k.

V. CASCADE STUDIES AND RESULTS

We first introduce our cascade dataset generated for the
IEEE 118 bus system using our power simulations in MAT-
POWER. Next, we use the influence-based and correlation-



based approaches to derive the graph of interactions for the
IEEE 118 bus system. We will then present our analyses of
the graph of interactions and present the identified critical
components based on the measure introduced in Section IV-B.
Finally, we use the cascade dataset to verify the importance
of the identified critical components.

A. Cascade Dataset and Operating Characteristics

Fig. 1. IEEE 118 test bus case
converted to a 186 node physi-
cal topology

We used MATPOWER [9], a
package of MATLAB m-files, for
solving the optimal power flow
and simulating cascading failures
based on a quasi-static approach
that focuses on transmission line
overloads as the mechanism for
propagation of failures. Using our
simulations, we generated a large
dataset of cascade scenarios each
triggered by two or three random
initial failures in the system. We
use the IEEE 118 test bus system
with 118 buses, including substations and generators, and 186
transmission lines. We use the power grid loading level, r
(the ratio of the total demand over total generation capacity
of the system) to simulate cascades under different settings
and evaluate the role of operating characteristics in cascade
analyses. For each analysis, we have simulated at least 20,000
unique cascading failure scenarios.

B. Graph of Interactions

The simulated cascade dataset is used to find logical graphs
of interactions, H and CR based on the techniques discussed
in Sections III. The physical topology of the IEEE 118 is
converted to a 186 node dual network (Fig. 1) where, the
nodes represent the edges in the original topology and links
represent common nodes between the lines. From now on, we
refer to this dual graph as the physical topology of the system.

In our first study, we use all cascade scenarios without
considering operating characteristics (i.e., r parameter). Ex-
cluding the self loops, total number of possible links in the
dual graph is 34,410 for the undirected correlation CR and
68,820 for the directed influence H matrices. However, based
on the dataset, the graph of interactions for CR and H consist
of 34,396 and 32,504 links, respectively. As these approaches
pick even the smallest interactions based on the data, to focus
on the major interactions in the system we apply thresholds to
only consider interactions with strength larger than a threshold
value. Since, thresholds can result in islands in the graph, we
focus on the Largest Connected Components (LCC). Identifi-
cation of LCC in interactions graphs with major strength of
interactions can be used in prediction of the largest cascade
sizes. For comparisons between the interaction graphs based
on influence- and correlation-based approaches, we choose
thresholds such that the size of LCC is comparable in both
networks. For instance, Fig. 2 shows the graph of interactions
atop the physical topology for influence- and correlation-based

(a) H plot (Threshold = 0.7) (b) CR plot (Threshold = 0.7)

Fig. 2. Graph of interactions for H and CR over the physical topology.

TABLE I
OVERLAP RATIO (OR) OF COMMUNITIES IN H WITH THRESHOLD 0.7

Community 3 4 6 7 8 9 10 11 12
1 - 0.067 - 0.053 0.389 - - - -
2 0.1 - 0.08 0.105 0.13 0.187 - 0.058 0.133
3 - - 0.105 0.154 0.111 - - 0.091 -
5 - - 0.227 - - - 0.2 - -
6 - - - 0.053 - 0.058 0.062 0.062 -
7 - - - - 0.187 - - - -
8 - - - - - 0.062 - - -
9 - - - - - - - 0.125 -

TABLE II
CRITICAL COMPONENTS BASED ON COMMUNITY-BASED CENTRALITY (I)

Rank H ≥ 0.6 H ≥ 0.7 CR ≥ 0.4 CR ≥ 0.7
1 32 25 138 44
2 151 26 119 26
3 96 24 82 25
4 167 32 73 43
5 76 55 64 27

approaches for threshold 0.7, which the size of LCC for H
and CR are 57 and 59, respectively. The strong interactions
on the same dataset of cascades is shown among different set
of components in Fig. 2, which emphasize on the role of the
technique in extracting the logical graph of interactions.

C. Analyses of Structures and Critical Components

To analyze the structure of interactions, we applied over-
lapped community detection algorithm discussed in Section
IV-A over the LCC of the logical interaction graphs H and
CR after applying threshold 0.7 and found 12 communities in
each. However, the structure of communities and their OR are
quite different. Our analysis show that some communities do
not overlap suggesting that failures inside such communities
rarely propagate to other communities. Table I shows the OR
for the communities identified in H with threshold 0.7. Next,
using the measure introduced in Section IV-B, we identified
5 most influential nodes in the cascade process in each of the
networks with different thresholds but similar LCC size (Table
II and marked in Fig. 2). Note that the size of LCC is similar
for H and CR with threshold 0.6 and 0.4 respectively. For
instance, nodes 32 and 151 in H with threshold 0.6 belong to 5
different communities, which contributed to their importance.

Similar to the different techniques that lead to different
graph of interactions on the cascade process, operating set-
tings, e.g. different loading levels for the power grid r, also
result in different graphs of interactions and ranking of critical



TABLE III
CRITICAL COMPONENTS BASED ON COMMUNITY-BASED CENTRALITY (I)

H (Threshold = 0.3) CR (Threshold = 0.3)
Rank r=0.6 r=0.7 r=0.8 r=0.9 r=0.6 r=0.7 r=0.8 r=0.9
1 9 62 45 8 44 68 26 20
2 58 44 51 9 36 71 36 36
3 35 16 52 45 21 69 38 54
4 27 181 9 58 51 75 25 31
5 61 7 102 48 50 50 39 33
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Fig. 3. (a) Number of times critical components failed in various generations
and (b) number of occurrences of the critical components in different cascade
sizes for H ≥ 0.7.

components. Table III, shows the top 5 critical components
identified for the system for different r values. These results
also show that depending on the condition and the operating
settings of the power grid, the critical components of the sys-
tem may vary. Therefore, it is important to perform criticality
study with considerations about the power grid’s conditions.

D. Verification of Criticality

In order to verify that the identified critical components
based on the new community-based centrality measure (intro-
duced in Section IV-B) reveal the actual influential components
in the cascade process, we have done a set of analyses based
on our cascade dataset. Particularly, we have focused on the
5 most critical components identified for H with a threshold
of 0.7 (i.e., nodes 24, 25, 26, 32 and 55 according to Table
II). Fig. 3a shows that these five nodes appear in the early
generations of the cascades, which shows their contribution in
the progress of cascade. Moreover, the results in Fig. 3b show
that among all cascade sizes observed in the dataset, these
nodes tend to be a part of larger cascades. In other words, the
occurrence of these nodes in cascades increase with the size of
cascade. These results confirm the criticality of the identified
nodes using the new community-based centrality measure.

VI. CONCLUSION

We discussed that the underlying physical topology of
power systems are not enough in capturing the complex
interactions among components in models of cascading fail-
ures. We reviewed various techniques, with a focus on data-
driven techniques, to derive the logical graph of interactions
from simulation cascade data. We specifically studied the
logical network of interactions for the IEEE 118 bus sys-
tem using influence-based and correlation-based approaches
and for various power grid operating settings, particularly
its loading level using cascade dataset generated from our
power system simulations. We also defined a novel measure

based on the overlapped community structures in the graph of
interactions to identify critical components in cascades, whose
protection can help in containing failures within a community
and prevent propagation to the whole power grid. Finally, we
used the cascade dataset and showed that the identified critical
components play important roles in cascading failures.
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