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Abstract—Smart grids being complex cyber-physical infras-
tructures demand real-time monitoring of their dynamic states.
Phasor measurement units (PMUs) are smart metering devices
with a high sampling rate, which facilitate visualizing the
dynamics of the states with the help of time series corresponding
to the system’s parameters and attributes. This work shows
the signatures of different cyber-attacks and some physical
phenomenons on the PMU time series and their impacts on
the correlation among the components’ states. A technique
exploiting the instantaneous state correlation matrix (associated
with any electrical attribute, i.e. bus voltage angle) is proposed for
providing early alerts for attacks to the control center’s operators
in real-time. The type of attack (cyber or physical) and the
location of the component that is compromised by the attackers
are also detectable by observing the instantaneous correlation
matrix as an image.

Index Terms—Cyber-attacks, PMU data, state correlations,
time series, smart grid.

I. INTRODUCTION

Smart grids are critical cyber-physical infrastructures that
are large in size, dynamic in operation and complex in nature
and therefore, a wide area monitoring system (WAMS) based
real-time monitoring is necessary for the proper functioning of
the system. Phasor measurement units (PMU) are very high
sampling rate devices for the measurement of the electrical
attributes (e.g, voltage and current phasors, and frequency) in
real-time, which are deployed throughout the WAMS to obtain
data to estimate the states of the system for the continuous
monitoring of the system. Modern power systems are rapid-
changing and more stochastic than before because of the
introduction of the of smart devices, electrical vehicles, and
other modern electrical devices in the load side and distributed
energy resources (DER) in the generator side. For the quickest
response in case of different events and stresses, on-line
monitoring of the states is required. Moreover, cyber-attacks
of different types can hamper and mislead the control center
to take wrong decisions and operating actions. Therefore,
such events and stresses should be detected by the system in
real-time to have prevention against situations affecting the
reliability of the system, such as, physical attacks masked
by cyber attacks. Earlier detection of the anomalies in the
grid and determination of its location may save the grid from
further damage, for example, cascading failures followed by
large blackouts.

The continuous data streams from all the PMUs can be
considered as the multivariate time series. Managing large
time-stamped data from the PMUs as time series enables us
to apply different real-time detection techniques on the PMU
data to provide alarms in the case of anomalies. Since the
sampling rates of the PMUs are high, rapid estimation of the
states in real-time can be possible for the control mechanism.

The power system is an interconnected system and the
correlation among the component’s states are governed by the
physics of the power flow. Since the power flow varies with
time according to load variations and other physical events,
the correlations among the states vary in time. In addition to
normal events that can cause variations in correlations, cyber-
attacks and physical stresses can also affect the correlation
among the state of the components. These correlations can be
calculated and observed from the PMU time series associated
with system components.

In this work, we have demonstrated that the changes in
the correlation pattern among the states (i.e. PMU time se-
ries) with time can be used as a useful visualization tool
for monitoring the condition of the grid. By visualizing the
instantaneous state correlation matrix as an image, we observe
that both the cyber-attacks and physical phenomena have
certain signatures, which can be used for identifying various
types of stresses. The correlation matrices can be both visually
and algorithmically be analyzed to extract the signature of
stresses and locate them in the system. Real-time analyzing of
the instantaneous correlation matrix as an image can provide
earlier alarm about the cyber and physical anomalies and can
locate them as well. In this paper, we present examples of
such correlation matrix images and a simple image processing
method for detecting and locating cyber and physical stresses
on the system.

II. LITERATURE REVIEW

Although the real-time detecting and locating of the cyber
or physical events in smart grid are newer topics to address
by researchers, various methods for the detection of anomalies
in the power grids have already emerged. For instance, Chen
et. al. [1] proposed determining a lower-dimensional model
for data by using the historical data. In real-time, this lower-
dimensional model of the data is used to predict data one step
ahead. If the mismatch between the predicted data and the



actual data exceeds a certain threshold, the data is considered
to be anomalous. Wu et. al. [2] also proposed a robust online
detection method of the anomaly in power systems in which an
alternative feature selection method has been used to determine
the lower-dimensional representation of the PMU data. The
authors proposed iForest algorithm for the detection of the
anomalies. Cai et. al. [3] proposed detecting and locating
anomalies in the grid by considering the PMU data stream
as multivariate time series and obtaining the principal compo-
nents of the data. The real-time detection technique involved
applying the k-nearest neighbor (kNN) method on the T 2

and Q statistics of the Principle Component Analysis (PCA)
represented data and comparison with those of historical data.

Kurt et. al. [4] proposed a cumulative sum (CUSUM) based
algorithm for the real-time detection of cyber and hybrid
attacks in smart grids. Chu et. al. [5] used three sample
quadratic prediction algorithm (TSQPA) based filter to predict
a sample from its previous three samples and proposed a
false data detection algorithm on the basis of the mismatch
between the predicted sample and the measured sample. This
latter paper shows that the false data detection method works
quite accurately on the suddenly applied false data, but fails
to perform in the case of gradually changing false values.

Some neural network based methods have also been pre-
sented in the literature for detecting cyber-attacks in power
systems in real-time. For example, Ganjkhani et. al. [6]
proposed nonlinear auto-regressive exogenous neural network
(NARXNN) to detect false data injection attacks in real-time.
NARXNN is a robust recurrent neural network architecture
specially designed for time series. This method exploits the
highly correlated states for predicting the states one-step ahead
using measurement values along with historical data. Compar-
ing the predicted state values with the original measurements,
the technique identifies injected false data. In our work, we
also considered the PMU data as time series and proposed a
simple and fast method for the real-monitoring of the cyber
and physical anomalies in smart grids based on state correla-
tions, which works better than existing methods particularly
for gradually changing events such as ramp attacks.

III. CORRELATION AMONG THE STATES OF THE
COMPONENTS

Since the power system is an interconnected structure, the
electrical attributes measured at different PMUs have a signifi-
cant amount of correlation based on the geographical distance,
nature of the power flow, physical and structural properties of
the system including connectivities, line impedance, etc. In our
study, on the IEEE 118 bus system, we have assumed that there
are PMUs at each of the 118 buses. However, in today’s power
system the assumption is not entirely realistic, nevertheless,
the technique developed in this paper can be extended for
real-life power systems with a limited number of PMUs by
incorporating any of the optimal PMU placement algorithms
[7]. Fig. 1 illustrates the correlation among the PMUs in terms
of one of the electrical attributes. The correlations illustrated
in Fig. 1 have been calculated from the day long PMU data
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Fig. 1. Average correlations among PMU data in IEEE 118 bus system
(calculated over day-long time series).

considered as time series. We notice that on average there are
high correlations among the PMU data.

For the simulation of the PMU data time series, we have
used MATPOWER 6.0 [8] to run the power flow solution
with time-varying loads in all the load buses to generate
the time series. The daily load profiles from the NYISO [9]
are collected and normalized to add to the MATPOWER’s
default load to generate the time series. Standard PMU data
consists of continuous (at a sampling rate of a few kHz)
measurements of voltage phasor, current phasor, and frequency
at a bus. However, PMUs send data to the control center to
at a much lower rate (a few Hz). In our simulation, we have
considered 0.033Hz as the sampling rate, however, the method
can be easily extended to higher sampling rates by increasing
computational resources.

The correlation pattern shown in Fig. 1 changes in time
based on the influence of various changes in the power
grid, for example, load demand variation, topology changes,
generation variation, tripping of the transmission line, etc.
Also, if any of the PMUs is compromised by cyber-attacks
the observed correlation among the PMUs will change. Our
goal is to characterize the changes in the correlation among
the PMU time series to detect whether there is a cyber attack,
to distinguish it from other probable physical events and to
determine the location of the PMU which is under attack. In
this section, we will illustrate the effects of typical physical
phenomena and cyber attacks on the PMU time series and will
study the effects on the correlation pattern among the PMU
data by observing the instantaneous correlation matrix in real-
time.

A. Effects of Physical Events on PMU Time Series

We have investigated the effects of different physical events
on the time series from the nearest PMU as well as nearby
PMUs to the event. In this paper, we define nearby as buses,
which are one hop away from the main bus. Fig. 2 illustrates
the effects of a few physical events (line tripping, abrupt load
change, and load power factor change) on the voltage angle
time series of the PMU installed on the bus in which these
events occurred. In this case, we have simulated all the events
on BUS No. 85 of IEEE 118 bus system. For all the events,
sharp changes can be observed in the time series at the onset



of the events. Similar behavior can be observed if the event
occur at other buses in the system.
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Fig. 2. Effects of physical events on the nearest PMU time series.

Most of the physical events influence the nearby buses in
addition to the buses where the incident occurred. For example,
we observe the effect of single tripping. Fig. 3 illustrates
the effect of tripping of the transmission line between Bus
no. 85 and BUS No. 89 of IEEE 118 bus system on the
nearby PMU signals (voltage angles). We can observe that
the tripping affects bus voltage angle signals of PMU No. 85,
87 & 89 but the signal in PMU No. 88 seems to be unaffected
although PMU No. 88 is not geographically very distant from
the tripped line.
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Fig. 3. The effects of a single line trip on the few PMUs nearest to
the place of incidence.

B. Mathematical Formulation of the Cyber Attacks

Different types of cyber-attacks threaten smart grid security
and newer types of attacks are being designed every day. In
this paper, we have considered three types of cyber attacks:
Denial-of-Service (DoS) attack, Data-replay attack, and Ramp
attack. Among them, DoS attack and Data-replay attacks are
very common for any cyber-physical system while the ramp
attack is special because of the difficulties in detecting the

attack due to the absence of discontinuities at the onset of
the attack. In this subsection, we will try to find mathematical
formulations of them and illustrate their effects on PMU time
series.

Let, P be the set of the PMUs in IEEE 118 bus system,
A ⊂ P be the set of PMUs under cyber attack and S ⊂ P be
the set of PMUs the attackers have access to record data.

The DoS attack can be modeled as the unobservability of the
PMU data during the attack duration. Let, xi(t) be the actual
time series of any electrical attribute (e.g. voltage phase angle)
of the bus associated with the i−th PMU. In the case of the
i−th PMU to be under DoS attack, the time series from this
PMU can be represented as:

xDoSi(t) =

{
ni(t) if tstart ≤ t ≤ tend
xi(t) + ni(t) otherwise, (1)

where tstart and tend are, respectively, the starting and
ending of the DoS attack, and ni(t) is the Additive White
Gaussian Noise signal associated with the i−th PMU. (Fig.
4a)

In data replay attack, the attacker records the data from
some of the PMUs that they have access and replays the past
data in the present time to the PMUs under attack:

xReplayi
(t) =

{
xk(t

′ + t− tstart) + ni(t) if tstart ≤ t ≤ tend
xi(t) + ni(t) otherwise,

(2)
where tstart and tend are, respectively, the starting and

ending of the replay attack and t′ is the starting of the
recording time. Here, i ∈ A and k ∈ S. (Fig. 4b for i = k and
Fig. 4c for i 6= k). From hour 16 to 17, the attacker injected
the past data (hour 13-14) from Bus 85 into the same bus
(Fig. 4b), whereas from hour 21 to 22, the attacker injected
past data form PMU of bus 102 into the PMU of bus 85 (Fig.
4c).

In the ramp false data injection, the attacker slowly intro-
duces bad data to remain undetectable by any prediction based
detector. In Fig. 4d, we observe the ramp attack at hour 18,
instead of a sharp change in values at the instant 18.00 hour,
false data are gradually inserted into the PMU time series as
follows:

xRampi(t) =

{
xi(tstart) + ni(t) +m(t− tstart), if tstart ≤ t ≤ tend
xi(t) + ni(t), otherwise,

(3)
where, m is the slope.

C. The Instantaneous Correlation Matrix

In our study, since we have assumed that there are PMUs
in each of the buses, the time series from the nearby PMUs
should have strong correlations among themselves. However,
because of the changes in the load curve and other dynamics
of the power system, the correlation among the PMU time
series changes with time. Therefore, we are interested in the
instantaneous correlation among the the PMU time series. The
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Fig. 4. The effects on the voltage angle time series associated with the PMU
at Bus 85: (a): DoS Attack (Hour 10-11) (b): Replay Attack Hour (16-17)
with the past data from the same bus; (c): Replay Attack (Hour 21-22) with
past data from Bus 102; (d) Ramp attack at Hour (18-19).

instantaneous correlation matrix of the PMU data at any time
instant t is an N × N square matrix C(t). Any element of
C(t) is represented as:

rij(t) =

∫ t

t−tc xi(τ)xj(τ)dτ√∫ t

t−tc x
2
i(µ)dµ

√∫ t

t−tc x
2
j(ν)dν

, i, j ∈ P, (4)

In Fig. 5 the instantaneous correlation matrix C(t) has been
visualized as an image during various events. Since PMU at
bus index 69 is the reference PMU (PMU associated with
the slack bus), we can see a horizontal and vertical line
corresponding to PMU No. 69 in all the cases. In case of cyber
attacks, the correlation profile of the attacked PMU with all
other PMUs changes are distinguishable from the horizontal
and vertical lines in the correlation image. Physical events on
a single bus affects nearby PMUs. We can observe distinct
areas in the correlation image. The ramp attack also affects
the correlation image in a similar way which is undetectable
by linear predictors as was also discussed in [5].

IV. METHOD FOR DETECTION AND LOCATING EVENTS IN
REAL-TIME

In this paper, we propose a technique to provide the operator
an early alert about the cyber attacks on the smart grid
and to find the attack locations based on the instantaneous
state correlations. An operator can have an alarm of any
cyber physical anomaly by visualizing the instantaneous state
correlation matrix image itself in real-time and the location
of the attack is also identifiable from the image in real-time
based on the horizontal and vertical lines that appear in the
image. The automatic identification of the anomalies involves
simple image processing technique (i .e. detecting horizontal
and vertical lines for cyber-attacks.)
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Fig. 5. Correlation matrix images for various cyber and physical events.

For detection and locating of the attack in real-time, we
process the instantaneous correlation matrix image, C(t) for
each sample. The steps are given below:
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Fig. 6. (a) Instantaneous correlation matrix at the onset of the ramp attack, (b)
image after removing reference PMU and thresholding, (c) the vector, v(t).

Converting C(t) to binary form: At first, we remove the
horizontal and vertical line for the reference (slack bus) from
C(t). Then we apply threshold to that image to obtain a binary
image CBinary(t) by . Here, we have selected the threshold
as the median of the intensity values of the pixels of C(t).
C(t) and CBinary(t) are shown in Fig. 6(a) and Fig. 6(b),
respectively.

Calculating v(t): From the binary correlation image we
determine the number of PMUs with which any PMU has a
significant correlation (above threshold). Let the i−th element
of the vector v(t) represents the number of PMUs with which
the time series of the i−th PMU has a significant correlation
at time instant t, where i ∈ P. We calculate the v(t) as:
v(t) = CBinary(t)u, where u = [1, 1, ...1]

T .
Detection of Cyber Attack: Let denote the n− th minimum

element of a vector, x as min(x, n). We detect a cyber attack



if:

min(v(t), 2)−min(v(t), 1) > b, (5)

where, b is a threshold selected empirically.
Locating Cyber Attack: The PMU which is compromised

by the attacker can be identified as the index of the minimum
element of v(t). Mathematically, the index, l of the attacked
PMU is calculated from the following equation:

vl(t) = min(v(t), 1). (6)

Since some of the PMUs have significant correlations with
a small number of PMUs in even in normal condition, for
avoiding false positive we check for vl(t) < vhist,l to declare
cyber-attack, where vhist = Chistu. Chist is the historical
average correlation matrix.

The cyber-attacks can be distinguished from the physical
events in this process as in the next example. Fig. 7 illustrates
the effect of a physical phenomenon on the correlation ma-
trix. From Fig. 7(c) we can observe that, a few consecutive
elements of the vector v(t) are comparatively smaller than
the others unlike cyber-attacks illustrated in Fig. 6, where a
single element of the vector v(t) is very small compared to
the others.
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Fig. 7. (a) Instantaneous Correlation Matrix at the onset of a physical event
(restoration of a tripped line), (b) Image after removing reference PMU and
thresholding, (c) the vector, v(t).

V. PERFORMANCE EVALUATION

A. Detection of Cyber-attacks

Our evaluations show that the proposed method has a good
performance for the detection of cyber-attacks. Table. I shows
the detection and the correct locating rate for different types
of cyber-attacks. The average detection and locating rate has
been calculated by simulating cyber-attacks in all the PMUs
of IEEE 118 bus system. This method performs well for the
ramp attacks as well, which is difficult to detect because of
the gradual injection of the falsified data.

B. Detecting and Locating Physical Stresses

Since any physical event on a single bus affects the electrical
attributes of several buses, determining the exact PMU location
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Fig. 8. (a) Instantaneous correlation matrix at the onset of a physical event
(tripping line between BUS No. 55 and BUS No. 59), (b) the vector, v(t) at
the onset of the event.

is difficult from the correlation image. In some of the case, we
can exactly detect and locate physical attacks. Fig. 8 illustrates
detection of the tripping of Branch No. 87 in IEEE 118 bus
system, which connects BUS No. 55 and BUS No. 59. From
the correlation matrix in Fig. 8(a) we can easily identify some
anomaly near PMU No. 58 to PMU No. 64. Since we can
see horizontal and vertical lines within a range instead of a
single PMU (as in the case of cyber attack), it can be decided
that the stress is physical. The effect is also identifiable from
v(t) in Fig. 8(b) and the algorithm locates PMU No. 59 as the
anomalous PMU, which was in fact connected to the tripped
line.

However, in some cases, this method detects the event cor-
rectly but fails to locate it exactly. For example, we simulated
a line tripping between BUS No. 92 and BUS No. 102. From
Fig. 9(a) we can easily identify that there is an event within
BUS No. 82 and BUS No. 93, but the method locates the
failure at BUS No. 82, which is in fact two hops away from
BUS No. 92. And in some cases, the method fails to detect
physical events. Fig. 10 illustrates such cases.

In summary, the proposed method based on the state cor-
relation matrix can detect and locate cyber attacks with good
performance. However, while the method can detect physical
stresses and distinguish it from cyber attacks, it may not be
able to accurately locate the physical stresses in the system. In
future work, we will investigate and characterize the properties

TABLE I
PERFORMANCE OF DETECTING AND LOCATING CYBER ATTACKS IN TERMS

OF TRUE DETECTION RATE AND RATE OF LOCATING THE EXACT
ATTACKED PMU.

Cyber Attack Detection Rate Exact Locating Rate
DoS Attack 1.0000 0.9915

Replay Attack 0.9915 0.8803
Ramp Attack 0.9402 0.8454
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Fig. 9. (a) Instantaneous correlation matrix at the onset of a physical event
(tripping line between BUS No. 92 and BUS No. 102), (b) the vector, v(t)
at the onset of the event.
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Fig. 10. (a) Instantaneous correlation matrix at the onset of a physical event
(tripping line between BUS No. 85 and BUS No. 89), (b) the vector, v(t) at
the onset of the event.

of the system and components that may affect the performance
of the method to enhance locating physical stresses.

VI. CONCLUSION

In this work, we introduced a real-time state correlation-
based monitoring technique for early detection of anomalies
in power grids using PMU time series. The state correlation
matrix of the system was generated and analyzed. The visual
presentation of state correlation matrices provide a simple yet
effective visualization tool to detect stresses, such as cyber
attacks and various physical events, in real-time. We developed
a simple image processing-based technique for the detection
and locating of cyber-attacks in smart grids from the instan-
taneous correlation image and distinguishing them from the
physical anomalies. Prospective future works include detection
and locating of coordinated cyber-attacks, classification among
the cyber-attacks, and detecting of physical failures under
unobservablities using the correlation among the PMU data.
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