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Abstract—Many critical infrastructures are interdependent
networks due to the services they receive from one another. Smart
grids are examples of such systems consisting of interdependent
power and cyber networks. In spite the fact that such interdepen-
dencies are essential for the operation of the whole system, they
can also fuel cascade of failures within and across the networks
as the failure of a service provider in one network can pose
failure risk to the dependent components in the other network.
Identifying optimal interdependencies to support the required
services while reducing the risk of cascading failures is important
in designing cascade-resilient interdependent networks. The goal
of this paper is to answer: how much and from which nodes
should a node request inter-network services to enhance the
cascade-resiliency of the whole system? To answer this question,
we adopt the influence model, a networked Markov chain
framework, and present an interdependent network model to
investigate the effects of interdependencies on cascading failures
and characterize the optimum allocation of interdependencies.
The presented interdependent network model enables modeling
general interdependency scenarios by allowing multiple, directed
and weighted interdependency links and capturing the inter-
dependencies in a probabilistic fashion. Using this model, we
show that the topology of interdependent networks and the
allocation of the interdependencies largely affect their reliability
and cascading failures.

Index Terms—Interdependent Networks, Cascading Failures,
Probabilistic Modeling, Influence Model, Optimization, Smart
Grids

I. INTRODUCTION

Critical infrastructures such as power, communication,
transportation, gas, and water networks are interdependent
systems due to the services they receive from one another.
Smart grids are examples of such systems consisting of
interdependent power and cyber networks. The cyber layer
of smart grids consist of the communication network and the
control agents such as supervisory control and data acquisition
(SCADA), sensors and actuators and provides control and
monitoring services to the power grid. As we move toward a
smarter grid the role of the cyber network becomes even more
prominent in efficient and reliable operation of the power grid.
On the other hand, the components of the cyber network may
also depend on the power grid for the electricity services.

Dependencies due to the inter-network services lead to both
positive and negative influences on the efficiency and reliability
of the networks. In this paper, we focus on cascading-failure

phenomenon, defined as successive interdependent component
failures in a system, as a key reliability challenge in critical
infrastructures, and investigate effects of the interdependencies
on this phenomenon. The inter-network services can clearly
influence the reliability in a positive way by providing the
essential support for reliable operation. For instance, control
agents in the cyber network of smart grids have critical roles in
reliable operation of the power grid and stabilizing the power
grid in case of contingencies. On the other hand, depending on
another network for services can introduce negative influences
on the reliability due to the fact that failure of a service
provider in one network can pose failure risk to the dependent
components in the other network. For instance, as reported
in [1], in the 2003 blackout in Italy on September 28th,
unplanned shutdown of a power station led to failures of
communication network nodes and the SCADA system, which
were responsible for controlling the power grid. This event
led to further failures in the power grid resulting in a large
cascading-failure event in the system. Similar effects have been
observed from power-system simulations [2]–[5] and other
historical blackout data [6].

In order to design cascade-resilient interdependent net-
works, an important problem is to optimize the interdependen-
cies between critical infrastructures such that they minimize
the risk of cascading failures while at the same time they
support the required services for the operation of the net-
works. In other words, the following question is an important
engineering question for designing reliable interdependent net-
works: how much and from which nodes (in the other network)
should a node request inter-network services to enhance the
cascade-resiliency of the whole system? Here, the nodes refer
to components of the system, which are connected together
and interacting over the network structure of the system, and
require services from components of other networks for their
operation. To answer this question, we adopt the influence
model [7], [8], a networked Markov chain framework, to
model cascading failures and present an interdependent net-
work model to investigate the effects of interdependencies on
cascading failures and to characterize the optimum allocation
of the interdependencies. An important property of this model
is that it captures the effects of network structure as well
as the stochastic nature of failure propagations in an unified



framework. In this model, we assume that each node in one
network requires a service from the other network and can get
a portion/all of it from the nodes/node, which it selects from
the other network. To make this model more realistic based
on the geographical and engineering constraints of transmitting
services, we assume each node can select its service providers
from a group or cluster of nodes satisfying those constraints.
The proposed approach is capable of modeling more general
interdependency scenarios compared to the existing models
by allowing multiple, directed and weighted interdependency
links and capturing the interdependencies in a probabilistic
fashion. We further formulate identification of optimum in-
terdependencies in an optimization framework based on the
interdependent network model and the influence model. We
will show that the topology of interdependent networks and
the allocation of the interdependencies largely affect cascading
failures.

II. RELATED WORK

Due to the criticality of interdependent infrastructures, large
efforts have been emerged in studying interdependent systems
in the last decade. General concepts of interdependencies
among critical infrastructures, challenges in modeling interde-
pendent systems and their control and recovery mechanisms
have been intensively discussed in [9]–[13]. These works
mainly discuss the intrinsic difficulties in modeling interde-
pendent systems and suggest new methodologies for their
modeling and simulation as a single coupled system. One of
the problems of concern in interdependent networks is their
reliability to cascading failures. Cascading failures in single
systems have been largely studied. For instance, [14] provides
a review of models and analysis for cascading failures in
power grids. Historical data on large scale failures in critical
infrastructures, such as power grids, as well as studies and
simulations of such systems all suggest that interdependencies
among the systems can potentially affect cascading failures
in a significant way [2]–[4], [6]. Recently, a large body of
work has been forming in the literature for studying cascading
failures in interdependent systems (see for example, [1], [15]–
[17] and references therein). In particular, authors in [17]
present a short review of various models for cascading failures
and related problems in interdependent networks. Next, we
present a short review of related efforts to the work presented
in the current paper.

The work by Buldyrev et al., presented in [1], considers a
graph-based approach that utilizes the percolation theory for
modeling cascading failures in interdependent networks and
provide an analytical formulation of the percentage of failed
nodes in the steady state while considering the role of coupling
between the networks. Many of the existing work consider
a one-to-one correspondence between the components of the
two networks for modeling interdependencies; however, most
real interdependent networks can have multiple interdepen-
dency links between a component in one network and the
components of the other network, as have been considered
in [15], [16], [18] as well as the current paper. In particular,

authors in [16] present a graph-based model with multiple
interdependency links and the effects of multiple links are
combined using boolean logic. The latter model has been used
to optimally find root cause of failures in cascading failures
and the problem is shown to be NP complete. A key difference
of the work in the current paper compared to [16] is that in the
model presented in [16] node failures deterministically affect
the state of the other nodes according to the boolean logic
while our model enables capturing more general scenarios by
considering probabilistic dependencies based on the directed
and weighted inter-network links. Probabilistic models for
studying interdependent networks have also been proposed [4],
[20]. For instance, in our earlier work in [4], we captured the
role of communication and control inefficiencies and failures
in a Markov-based model for cascading failures using few
abstract parameters. In [20], authors present a model based
on branching process, namely Damon model, and mean-
field theory to model coupled infrastructure systems in an
abstract setting. However, in contrast to the current paper, the
probabilistic models presented in [4], [20], do not consider the
role of the topology of the system in cascading failures.

Moreover, the efforts in [16], [19], [21], [22] address
the characterization of critical components or the minimum
number of nodes/links whose removals will disrupt the func-
tionality of the interdependent networks. Most of such efforts
are based on graph theoretic approaches to identify critical
components. Furthermore, authors of [19] adopt the influence
model to define a “Vulnerability Rank” measure to identify
the most influential and critical nodes in a single network.
They have calculated this measure for networks with various
topologies including scale-free, small world, and Erdos-Renyi
networks as well as the EU power grid (the power network
of a part of Europe). Although the latter work also uses
the influence model, it is different from the current work
in many key aspects. First, the work in [19] addresses the
problem of identifying critical nodes in a single network while
the current work addresses the problem of finding optimum
allocation of interdependencies between two interdependent
networks. Moreover, the influence model used in [19] is based
on node-degree and betweenness-centrality models that the
authors have proposed, which are different from the influences
based on the inter-network service model defined in this paper.
Finally, the studies presented in [19] are based on the eigen-
vector analysis of influence matrices, while the current paper
formulates an optimization framework based on the influence
model to characterize the optimum interdependencies.

A closely related group of works to the current paper
consists of works on characterization of cascade-resilient crit-
ical infrastructures by finding optimal structures (topologies)
for interdependent systems. For instance, in [22], authors
investigate various network mixing patterns for positioning in-
terdependent links to characterize cascade-resilient structures.
In [23], authors propose using centrality of nodes as a metric
to find optimal interdependency between two networks to
prevent large cascading failures. The closest work to the work
presented in the current paper is [18], which studies optimal



allocation of interdependent links. In [18], authors use a
probabilistic approach to show that regular allocation of inter-
network links (same number of links for all nodes) gives better
performance when intra-topologies of the individual networks
are unknown. The work in the current paper; however, assumes
that the topologies of individual networks are known since it is
the case for most of the real networks. Another related paper to
this work is [24], which has an experimental approach to study
how interdependencies (the set of node pairs glued together)
affect the overall robustness of interdependent networks. In
[24], authors study the structural properties of interdependent
networks based on the topological interpretation of the Moore-
Penrose pseudo-inverse of the graph Laplacians. In the latter
work, the authors have proposed the structural centrality
measure to characterize a centrality ranking of nodes based
on the geometry of the network, and then studied the effects
of various approaches to glue nodes based on their centrality
measure (low-low, high-high, and random).

In the current paper, we present a mathematical frame-
work based on the influence model for characterizing the
optimum interdependency allocation with multiple, directional
and weighted interdependency links for each node of the
interdependent network.

III. INTERDEPENDENT NETWORK MODEL

In this section, we present the interdependent network model
consisting of two networks with the understanding that the
same approach can be applied to any interdependent system
with arbitrary number of networks. The interdependent net-
work model has two main sub-models: (a) intra-network model
and (b) inter-network model. Before explaining each sub-
model, we define four types of influences on each component
of the interdependent system, which allow us to model the
interactions among components. We specifically use the word
influence to follow the language of the influence model in [7].

Definition 1. System influences: The influences on a compo-
nent from other components in the same network is termed
system influences. Such influences are mainly due to the
interactions among components of the same system, i.e., the
internal dynamics of the system. For instance, changes in
the power flow or voltage at certain points of a power grid
can influence the state (e.g., voltage) of other components,
even in remote locations, due to the physics of the electricity.
Particularly, the electrical distance measures (such as line-
outage distribution factor) [25] are examples of metrics to
quantify system influences in the power grid.

Definition 2. Internal influences: The influences on a compo-
nent due to its internal properties is termed internal influences.
For instance, a communication router or SCADA server may
be internally robust to power outages and stay functional
during blackouts as it has been equipped with UPS batteries.

Definition 3. Intra-network influences: The influences on a
component due to both the system influences and the internal
influences.

Definition 4. Inter-network influences: The influences on a
component in a network due to the services that it receives
from components of the other network. For instance, substa-
tions in power grids get influenced by the cyber elements due
to their dependence on the monitoring and control services
that the cyber network provides.

A. Intra-network model

We model the individual networks in the interdependent
system with a directed and weighted graph denoted by Gi=<
Vi, Ei>, where i represents the index of the network, i.e., for
two interdependent networks i ∈ {1, 2}. Here, Vi is the set of
nodes in the network i with the cardinality denoted by ni and
Ei is the set of directed links represented by the ordered pairs
of nodes, i.e., a link from node vsi ∈ Vi to node vri ∈ Vi is
denoted by (vsi , v

r
i ). For each directed link (vsi , v

r
i ) ∈ Ei, we

associate a real-value weight wii(v
s
i , v

r
i ) ∈ [0, 1], representing

the portion of the total influences on node vri that comes
from the system influence of node vsi on vri . We assume that
wii(v

s
i , v

r
i ) 6= 0 for at least one node vsi ∈ Vi such that s 6= r.

This means that every node in a network gets influence at
least by one other node in the same system. Note that node
vsi can only influence node vri , when (vsi , v

r
i ) ∈ Ei. Based on

the definition of the system influences, graph Gi is not limited
to the physical topology of the system; it can also represent
a logical topology capturing the interaction of components
within a system. We will explain in Section IV that wii(v

s
i , v

r
i )

is proportional to the probability that node vri gets influenced
by node vsi in a positive or negative way during cascading
failures. We will elaborate on the effects of such influences
on cascading failures in Section IV.

As a part of intra-network model and in order to model
components with various levels of robustness and vulnerability
in the system, we assume that node vri ∈ Vi has an internal ro-
bustness weight wR

i (v
r
i ) ∈ [0, αR

i ] and an internal vulnerability
weight wV

i (vri ) ∈ [0, αV
i ]. Here, parameters αR

i , α
V
i ∈ [0, 1]

allow us to control the range of values for wR
i and wV

i in
the network i. In other words, αR

i and αV
i tell us at most

how much of the total influence on nodes can come from
the internal influences. We will explain in Section IV that
the value of wR

i (v
r
i ) is proportional to the probability that a

node stays functional/failed despite all the influences from the
other nodes in the system. For instance, as mentioned earlier, a
communication node may stay functional during blackouts by
using its UPS battery. On the other hand, the value of wV

i (vri )
is proportional to the probability that a node fails due to some
internal effects during cascading failures. For instance, it has
been observed that power-grid components, for example the
transmission lines in the vicinity of the failed lines, are likely
to fail due to erroneous tripping by their protection relays
during cascading failures [26]. The role of such malfunctions,
named hidden failures, have been studied in [26].

Recall that based on Definition 3 the intra-network influ-
ences on a node vri represented by Iii(vri ) contains both the



system influences and the internal influences and is given by:

Iii(vri ) :=
(
wR

i (v
r
i ) + wV

i (vri )
)
+
∑
vs
i∈Vi

wii(v
s
i , v

r
i ). (1)

B. Inter-network model

To model the interdependency between the two networks,
we consider directed and weighted inter-network links denoted
by the ordered pair (vsj , v

r
i ), where vsj ∈ Vj , vri ∈ Vi,

i, j ∈ {1, 2} and i 6= j. Hereafter in this paper, the variables
i and j are specifically allocated to refer to the networks i
and j in the interdependent network. We denote the inter-
network influences on node vri by Iji(vri ) and assume that
the node vri ∈ Vi receives Iji(vri ) ∈ [0, βi] portion of its total
influences from the inter-network influences due to its reliance
on inter-network services. Here, βi allows us to control the
range of inter-network dependencies for network i. We denote
the portion of the inter-network service, provided by node vsj
to node vri for i 6= j, by wji(v

s
j , v

r
i ) ∈ [0, 1] such that

Iji(vri ) =
∑

vs
j∈Vj

wji(v
s
j , v

r
i ). (2)

The value of wji(v
s
j , v

r
i ) corresponds to the strength of the

inter-network influence from node vsj to node vri and is
proportional to the probability that node vsj influences node
vri in a positive or negative way during cascading failures. We
will elaborate on the role of the inter-network influences in
cascading failures in Section IV. Here, we present an example
to clarify the meaning of wji. Suppose that, in a smart grid,
40% of a power substation’s reliability depends on the status
and performance of the cyber network (i.e., I21(S) = 0.4).
Now consider the scenario in which the substation S mainly
relies on the control center A for the reliable operation (e.g.,
w21(A,S) = 0.35) while another control center B in a nearby
region also contributes in controlling substation S by, for
example, managing the import and export of power between
the two regions or serving as a backup control center (e.g.,
w21(B,S) = 0.05). Note that w21(A,S) + w21(B,S) =
I21(S). Here, the failure of the control center A introduces
higher risk of failure for the substation S (proportional to
w21(A,S)) compared to the failure of the control center B.
Similar examples can be considered for the communication
network nodes, which receive their required electricity from
various points of the power grid.

In our model, we assume that for every node vri ,
wji(v

s
j , v

r
i ) 6= 0 for at least one node vsj ∈ Vj . In other

words, node vri receives the inter-network service at least
from one node in the other network. To make the model
more realistic, we assume that nodes in network i can only
receive service from a subset of nodes in network j due
to geographical, physical and engineering constraints. For
example, in a control and communication network it is not
feasible to receive electricity from a geographically distant
node in the power grid due to the cost and physical constraints.
To capture such constraints in our model, we assume that each
network, say network i, is divided into a set of clusters denoted
by Ci = {C(1)

i , C
(2)
i , ..., C

(mi)
i }. We define a cluster function

Fig. 1. Interdependent networks with directed and weighted interdependency
links. Each network consists of a set of clusters and nodes in the cluster k
can only receive inter-network services from nodes that belong to the cluster
k in the other network.

ci(v
r
i ) : Vi → {1, ...,mi} that returns the cluster index that

node vri belongs to it. To each cluster C(k)
i , one can associate

a small subset of the clusters from Cj for i 6= j, as the feasible
serving clusters, that can provide service to the nodes in the
cluster C(k)

i . For simplicity and without loss of generality,
we assume that networks i and j have the same number of
clusters and we consider a one-to-one correspondence between
the clusters. Specifically, we assume that nodes in cluster C(k)

i

can only receive service from the cluster C(k)
j and vice versa.

Finally, based on the intra-network model and the inter-
network model discussed above, we define the combination of
the effects as following.

Definition 5. Total influences: The total influences on the node
vri ∈ Vi is denoted by I(vri ) and is given by

I(vri ) := Iii(vri ) + Iji(vri ). (3)

The schematic of the interdependent network model is
depicted in Fig. 1.

IV. CASCADING-FAILURE MODEL IN INTERDEPENDENT
NETWORKS

In this section, we present a model for cascading failures
in the interdependent networks based on the model introduced
in Section III and the influence model presented in [7]. The
influence model provides a tractable mathematical represen-
tation of random, dynamical interactions on networks using
networked Markov chains. In the general influence model, the
state evolution of each node depends on its internal Markov
chain as well as the state of its neighbors and their influences
on the node. The influence model has not been used for
analysis of cascading failures in the interdependent networks
heretofore, to the best of the authors’ knowledge.

In modeling cascading failures, we consider two possible
internal states for each node: failed represented by ‘1’ and
healthy represented by ‘0’. The state that the node vri lives in
gets influenced by: (1) the state of node vsi if wii(v

s
i , v

r
i ) 6= 0,

i.e., system influences, (2) the state of node vtj if wji(v
t
j , v

r
i ) 6=



0 for i 6= j, i.e., inter-network influences, and (3) the internal
robustness and vulnerabilities influences of the node itself.

In order to capture the effects of the internal influences
in the model, we consider two auxiliary nodes in excess to
the nodes in the interdependent system. The state of one of
the nodes, termed source of robustness, nR, is always zero
and the state of the other auxiliary node, termed source of
vulnerability, nV , is always one. We set the indices for nodes
nV and nR to be the first and second in the whole system,
respectively. Nodes nV and nR are exceptions to the rule of
influences and do not receive influence from any node in the
system but they influence node vri with value wV

i (vri ) and
wR

i (v
r
i ), respectively. These two special nodes lead us to adopt

a special form of the influence model called the ’evil rain’
model [7]. Based on the evil rain model and the presented
interdependent network model, we define the influence matrix
D(n1+n2+2)×(n1+n2+2) for the interdependent system as

D=


1 0 01×n1

01×n2

0 1 01×n1
01×n2

V
(1)
n1×1R

(1)
n1×1 F

(1)
n1×n1

F
(2)
n1×n2

V
(2)
n2×1R

(2)
n2×1F

(3)
(n2×n1)

F
(4)
(n2×n2)

 , (4)

where the element drs (the element in the r-th row and s-
th column) of the matrix D represents the influence of sth
node on the rth node in the whole system. Note that the
indices 3 to n1 + 2 represent nodes in the network 1, i.e.,
the power grid, and the indices n1 + 3 to n1 + n2 + 2
represent nodes in the network 2, i.e., the cyber network.
Next, we describe the sub-matrices of matrix D one by
one: (a) V

(i)
ni×1 = [wV

i (v1i ), w
V
i (v2i ), ..., w

V
i (vni

i )]T (in this
paper, superscript T denotes matrix transpose), (b) R

(i)
ni×1 =

[wR
i (v

1
i ), w

R
i (v

2
i ), ..., w

R
i (v

ni
i )]T , (c) The matrices F

(1)
n1×n1

and F
(4)
n2×n2

capture the intra-network influences for networks
1 and 2, respectively. For instance, the rs-th element of F(1)

is w11(v
s
1, v

r
1) for vs1, v

r
1 ∈ V1. These two matrices contain

information about the topology of the individual networks,
and (d) The matrices F

(2)
n1×n2

and F
(3)
n2×n1

capture the inter-
network influences on networks 1 and 2, respectively. For
instance, the rs-th element of F(2) is w21(v

s
2, v

r
1) for vs2 ∈ V2

and vr1 ∈ V1. These two matrices contain information about
the interdependencies. Note that in the matrices F

(1)
n1×n1

and
F

(4)
n2×n2

, the diagonal elements are zero. Matrix D is a row-
stochastic matrix, i.e., a matrix whose rows are probability
vectors, with nonnegative entries that sum up to 1. The fol-
lowing sub-matrix of D denoted by F is specifically important
in analyzing cascading failures in interdependent networks,

F=

[
F

(1)
n1×n1

F
(2)
n1×n2

F
(3)
(n2×n1)

F
(4)
(n2×n2)

]
. (5)

We assume that the cascading failure starts in one of the
networks, say network 1, with few initial failures. We set the
state of the initially failed nodes to one, while the rest of the
nodes are in the state zero. According to the evil-rain model
[7], we define the cascading-failure process as following. The
rth node in the interdependent network selects one node from

its set of influencing neighbors, defined as N (r) ,
{
s|s ∈

V1 ∪ V2 ∪ {nV , nR} s.t. drs 6= 0
}

, with a probability equal to
drs. After selecting a node, say `-th node, the rth node copies
the state of the `-th node in its state. This process repeats in
each step of the cascading failures. In this cascading-failure
model, nodes can have positive or negative influences on each
other. In other words, if the selected `-th node is functional, it
will have a positive influence on the r-th node by healing it in
case it was failed; however, if the selected `-th node is failed
then the influence is negative and the r-th node will fail too.
For instance, when a node in the power grid relies on a cyber
node, which is healthy, the cyber node can repair or stabilize
the power-grid node even if it has been failed or unstable in
the previous state. On the other hand, if a node in the power
grid relies on a cyber node, which is not functional, it might
fail because a failed control system can make the power-grid
node unstable. In [7], the asymptotic analysis of the evil rain
model has shown that the expected number of nodes in the
failed state in the steady state of the system is given by

Ef = 1T (I− F)−1U, (6)
where 1 is a (n1+n2)×1 vector of ones, I is an (n1+n2)×
(n1 + n2) identity matrix and U is a (n1 + n2)× 1 vector in
the form of UT = [V

(1)T
n1×1V

(2)T
n2×1]. Please refer to [7] for the

details on derivation of equation (6). Equation (6) allows us
to quantify the vulnerability of the interdependent networks to
cascading failures while capturing the effects of the topologies
and the interdependencies between the two networks.

V. OPTIMIZING INTERDEPENDENCIES

Increasing the reliability of interdependent networks to
cascading failures means minimizing the expected number of
cascaded failures in the network in the event of failures. We
propose minimizing the expected cascaded failures by identi-
fying optimum interdependencies that enhance the reliability.
We assume that the topologies of the individual networks are
known and fixed. In other words, matrices F(1)

n1×n1
and F

(4)
n2×n2

are assumed to be known. The goal is to find matrices F(2)
n1×n2

and F
(3)
n2×n1

, representing the interdependencies between the
two networks, that maximize the cascade-resiliency of the
whole system. To do so, we formulate the characterization
of interdependencies in an optimization problem as following:

minimize
F(2),F(3)

1T (I− F)−1U

subject to:

(i)F.1(n1+n2)×1 = 1(n1+n2)×1− (U+[R
(1)T
n1×1R

(2)T
n2×1]

T ),

(ii)wji(v
s
j , v

r
i ) = 0 if cj(vsj ) 6= ci(v

r
i ) fori 6= j, and

(iii)0 ≤ wij(v
s
i , v

r
j ) ≤ 1.

(7)
Here, the constraint (i) specifies that by selection of the
matrices F(2),F(3), the matrix D, defined in (4), should
remain row-stochastic. The constraint (ii) implies that node vri
can only receive service from nodes in the other network that
belong to the cluster with the same cluster index as the node vri
(the one-to-one correspondence condition between clusters).
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Different allocations of the weights inter-network links
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Fig. 2. The effects of (a) random allocation of single inter-network links
for two networks, and (b) the interdependency weights allocation for multiple
(4 per node) inter-network links, on the expected size of cascading failures.
These results are for the interdependent network consisting of the IEEE 118
bus system and a random topology with 90 nodes. Note that the values of βi
control the range of inter-network influences, i.e., Iji(vri ) ∈ [0, βi].

Finally, constraint (iii) limits the values of wji(v
s
j , v

r
i ) to the

real numbers in [0, 1] (representing the portion of the inter-
network service that the node vri receives from the node vsj ).
Clearly, this is a nonlinear optimization problem. However, by
selecting large number of clusters with few members over each
network and limiting wji(v

s
j , v

r
i ) to a set of quantized values,

we find a sub-optimal solution to this optimization problem
using parallel exhaustive search of the feasible solution space
based on branch-and-bound algorithm [27].

VI. RESULTS

In this section, we use the proposed models and present
our analytical results for the reliability of interdependent net-
works to cascading failures while considering various network
topologies and interdependency allocations in the system.

We consider two networks, one with the topology of the
IEEE 118 bus system representing the power grid and one
with a random topology with 90 nodes and average degree of
4 (generated based on the Erdos-Renyi model) representing the
cyber network. We generate the internal robustness and vul-
nerability weight vectors for all node, i.e., wR

1 , wR
2 , wV

1 , and
wV

2 , randomly based on a uniform distribution while ensuring
that wR

i (v
r
i ) ∈ [0, αR

i ] and wV
i (vri ) ∈ [0, αV

i ] (as explained
in Section III). In our analysis here, we have αR

1 = 0.02,
αR
2 = 0.2, αV

1 = 0.2, and αV
2 = 0.02. Different random

weights imply that certain nodes are more reliable/vulnerable
than others depending on their internal properties.

In order to show that the allocation of interdependencies
affect cascading failures in the interdependent networks, we
consider the following scenario. We assume that each node,
say vri for i ∈ {1, 2}, should receive its required inter-
network service from one single node in the other network,
say vsj for i 6= j. To decide which node should provide the
inter-network service to node vri , we pick node vsj randomly
from the cluster C(k)

j , where ci(vri ) = k. Selection of node
vsj results in allocation of an inter-network link from vsj to
vri . To show that different allocations of the inter-network
links affect cascading failures, we fix the individual network
topologies as well as vectors wR

i and wV
i and the values of

the inter-network influences for each node, i.e., the values of
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Fig. 3. (a) The effects of various topologies of the individual networks in
an interdependent system on cascading failures, and (b) the value of Ef for
different allocation strategies including single and multiple inter-network link
allocations and the optimal allocation of the interdependencies.

Iji(vri ), and only alter the allocation of inter-network links.
Figure 2-a represents the results for the expected size of
cascading failures for various random allocations of the inter-
network links. In Fig. 2, the results have been sorted from the
most reliable to the least reliable allocation. We observe that
the allocation of interdependencies affect cascading failures.
We also observe that as βi (the possible range of Iji(vri ))
increases, meaning that the strength of influences between the
two networks increases, so does the size of cascading failure.

Moreover, in order to show that the weights of the inter-
network links (strength of interdependencies) impact cascading
failures, we consider a similar scenario as the one in Fig.2-
a except that this time we assume that each node can re-
ceive its required inter-network service from multiple nodes
in the other network (in this example four nodes). To see
the impact of various weight distributions over the inter-
network links on cascading failures, we change the weights
over a fixed allocation of the inter-network links, i.e., for
node vri we generate random values of wji(v

s
j , v

r
i ) such

that
∑
{Selected vs

j}
wji(v

s
j , v

r
i ) = Iji(vri ). In Fig. 2-b, we

observe that the weights of the inter-network links also affect
cascading failures. Therefore, not only identifying service
providers are important but also the amount of reliance on
them is also important. The results in Fig. 3-a are obtained
by fixing interdependencies and altering the topologies of
the individual networks by rewiring a portion of the links.
Based on these results the topologies of individual networks
also affect cascading failure (as is also observable in Fig.2).
For fixed network topologies, to maximize the robustness of
interdependent networks to cascading failures, we need to
identify the optimum allocation of inter-network links and
their weights. We have identified a sub-optimal allocation of
interdependencies for the interdependent networks described
above using the approach discussed in Section V. Figure 3-
b presents the expected number of failures resulted from the
identified optimum allocation of interdependencies compared
to the random allocations. In Fig. 3-b, the values of Ef for the
random, single and multiple inter-network link allocations are
calculated by taking the average of Ef over 200 realizations
of such allocations. Based on Fig. 3-b, we observe that



in general multiple inter-network allocation leads to more
reliable interdependent networks compared to the allocation of
single inter-network links. To summarize, identifying optimal
interdependencies is important in designing more reliable
interdependent networks to cascading failures.

VII. CONCLUSIONS

Many critical infrastructures are interdependent networks
due to the services they use from one another. In this paper,
we presented an interdependent network model with directed
and weighted links between components of the system. In this
model, links represent the influences that each component has
on others due to internal, system, or inter-network service
interactions. We adopted the influence model, an existing
networked Markov chain model, along with the presented
interdependent network framework to model cascading failures
in the interdependent networks. Our analytical results con-
firmed that the allocation of interdependencies affect cascading
failures. We also presented an optimization framework for
characterizing the optimum allocation of interdependencies
to improve the reliability. We showed the optimum allo-
cation of interdependencies improve the cascade-resiliency.
Understanding the role of topologies and interdependencies
in interdependent networks is important in designing cascade-
resilient interdependent networks.
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