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Abstract—Various cyber-physical infrastructures such as com-
munication networks and power grids are known to be vulner-
able to large-scale stressors ranging from natural disasters to
intentional attacks such as those effected by weapons of mass
destruction and high-altitude electromagnetic pulses. The stresses
instigated by these events can cause damage to critical compo-
nents of the network infrastructure. In this paper, a general
probabilistic model is developed for assessing the vulnerability
of a communication network under various catastrophic events.
A multi-level scalable network framework is proposed to capture
the inter-dependencies across various communication networks
in the infrastructure. For a given large-scale stressor, the initial-
failure probability of each network component is formulated
independently and then by taking into account the failure of the
components that it depends upon. This enables the modeling of a
shared failure among network components. Detailed simulations
of a three-level network model are performed and key network-
performance metrics are computed including the total network
capacity, the maximum flow and the number of node failures.
This work paves the way to model and evaluate the reliability of
critical communication networks under massive stressor events.

Index Terms—Network topology, multi-level network, geo-
graphically correlated failures, point process, network reliability.

I. INTRODUCTION

The functional reliability of many networks largely depends
on the geographical topologies of networks as well as on
the locations and impact (geographical extent and severity)
of stressors1 [1]–[3]. For example, in the case of a communi-
cation network, various network components such as switches,
amplifiers/repeaters, multiplexers and links (fibers, copper
cables, antennas, etc.) can fail either directly from the stressor-
events or indirectly as a result of damage to the components
or systems that support the communication network, e.g.,
outage of power [4], [5]. Based on the geographical extent and
severity of stresses, the functionality of various networks can
be impaired at different scales. Clearly, the physical topology
of the network and the nature of stressors should be taken into
consideration together in the analysis of network reliability.

Modern communication networks are interdependent due to
the service or support (both infrastructural and logical) they

1By stressors we mean those events that impose physical stresses (intense
electromagnetic field, heat, pressure, etc.) over a network and can trigger
network component failures. As we are dealing with large-scale stresses in
this paper, stressors and attacks/disasters will be used interchangeably.

receive from one another. A multi-level network is composed
of several interconnected and interdependent sub-networks of
varying sizes ranging from small to medium to large, with
varying security levels and capacities. Although almost all
network infrastructures (military, commercial or private) can
be represented by a single topological level concept, it would
be precise to model it using the concept of a multi-level
network. In this paper, a three-level communication-network
architecture is presented that is scalable both in the number
of levels as well as the size of the network in each level.

Initial damage from certain stressors, e.g., weapons of mass
destruction (WMDs), high-altitude electromagnetic pulses
(HEMPs) and natural disasters, may exhibit a high degree of
spatial correlation. Similar to an earlier work [6], we assume
a Strauss point process to model the correlated locations of
multiple stressors that may occur simultaneously. Furthermore,
while in [6] the authors only consider a fixed-form Gaussian
degradation function, we generalize it to several degradation
functions (e.g., linear, circular and Gaussian) to describe
different types of stress influences. This function will also be
selected probabilistically to capture uncertainty in the types of
stressors. A degradation function defines the shape, range and
intensity of a stressor over a geographical area.

Inherently, the components of a multi-level communication
network possess different types of security and tolerance
requirements based on their importance in the network. For
instance, a military network or a fiber backbone network has
extra security and more robustness to stressors than a commer-
cial network due to the significance of these networks. While
taking into account the importance of a network component,
we devise a new formulation for calculating the failure proba-
bilities of nodes and links in a network. Moreover, we propose
an extended probabilistic shared risk link group (SRLG) for-
mulation that considers inherent connections among network
components to calculate their coupled-vulnerabilities to stres-
sors. The advantage of our new SRLG approach is that it does
not require any upper layer (e.g., IP layer) information and
allows us to compute the failure probability of each component
based on failure of components that it depends on. Finally,
we provide analytical and simulation results to demonstrate
the overall behavior of a realistic multi-level network under
different types of correlated stressor events.



II. RELATED WORK

Most existing analyzes of network failures start from a given
(fixed) network topology and then focus on various stressors
[7], [8]. Moreover, many of prior studies on physical stressors
were limited to single or geographically-isolated small-size at-
tacks or disasters [9], [10]. The impact of large-scale stressors
on networks was first introduced in [3]. Inherently, large-scale
stressors lead to geographical-correlation amongst the failures
of network components within the stressor’s geographical
proximity. Geographical correlations among large number of
component failures is modeled in [3] based on the geograph-
ical proximity of network components from stressor centers.
However, the authors only considered a single stressor event
at a time, and failure of any network component within the
range of stressor was assumed to be deterministic. However,
multiple attack/disaster events can occur simultaneously and
their effects on network-component failure are not determinis-
tic. A probabilistic failure model with multiple circular stressor
events has been proposed in [8]. However, the authors assigned
a fixed failure-probability to all network components, which
may not be realistic. Further, assumption of only circular-
shaped stressors does not completely capture the impacts of
various stressors on a network. A more realistic Gaussian
shape function for modeling range and intensity of several
stressors was used in [6]. In addition, the authors also used
a Strauss point process [11] to characterize the geographical
correlation among stressors.

There are other works on network failures where SRLG in-
formation was used to characterize the correlated link failures
in a network [12]. Following a stressor event and by assuming
that all components belong to an SRLG will fail with some
(fixed) probability, a simple approach to model correlated
failures in a network was proposed in [13]. Correlated failures
in networks were also studied based on attacks in the logical
layers [14], [15].

In contrast to all previous works, we propose a probabilistic
model for various stressors with a generalized multi-level
framework for the communication network topology. Further-
more, we devise a new formulation to compute the failure
probabilities of all components in a communication network
considering their coupled vulnerabilities.

III. MULTI-LEVEL COMMUNICATION NETWORK
FRAMEWORK

A multi-level communication network framework can be
used to represent the physical architecture of many of to-
day’s special communication networks. For instance, military
communication networks are supported by a wide range of
commercial and non-commercial networks. A similar termi-
nology named multi-level network is described in [16], where
the term multi-level implies all five abstract layers of OSI
(open system interconnection) model. The authors in [17] have
introduced a framework termed multi-provider network. Akin
to this effort, we have defined each level of our multi-level
network as the physical infrastructure of different networks.
We also emphasize the infrastructural dependency among

Fig. 1. A physical topology for a multi-level communication network.

different networks for efficient communication following a
stressor event.

Figure 1 depicts a prototype of a multi-level commu-
nication network of the types described here for military
communication. We categorize the physical infrastructure of
an interdependent communication system into three scales:
small, medium and large. The specifications of each scale are
given in Table I. For instance, the small, medium and large
networks can be military networks, wide area networks and
commercial networks, respectively. In this paper, we do not
consider failures in other infrastructures, such as the power
grid, supplying electricity for the communication network,
which is not true in reality.

TABLE I
SPECIFICATIONS OF EACH LEVEL IN A MULTI-LEVEL NETWORK

hhhhhhhhhhhParameter
Network size Small Medium Large

Number of nodes ∼ 100 ∼ 1000 ∼ 10000

Bandwidth low high high

Security high low low

Mathematically, the multi-level network can be represented
as a graph. Specifically, a finite undirected graph G =<
V,E > can be used to represent the multi-level communication
network with N = |V | nodes and M = |E| links, where | · |
denotes cardinality of a set. Here, vi ∈ V, i = 1, ..., N, denotes
the ith node, and (vi, vj) ∈ E represents a link that connects
nodes vi and vj , i, j ∈ 1, 2, ..., N .

IV. PROBABILISTIC MODEL FOR COMMUNICATION
NETWORK-COMPONENT FAILURES

The goal of this section is to map the spatial distributions of
various stressors to a probability distribution for the network
components being functional while considering their coupled
vulnerabilities.

A. Modeling correlated stressors

In general, multiple stressors can occur simultaneously
either in one geographical location or they can spread over
different locations depending upon the nature of stressors.



Fig. 2. Three types of stressors on a simulated multi-level communication
network. Nodes with three colors represent physical nodes of three commu-
nication networks which are placed on a (2500 × 1000) plane.

Akin to the work done in [6], we have used the Strauss point
process to represent spatially-inhomogeneous and spatially-
correlated stressor centers. The Strauss point process enables
us to model multiple stressor events simultaneously. The
locations of these stressors are spatially correlated with each
other on a geographic plane [11].

The spread and intensity of these stressors can be different
depending upon the inherent shape and strength of stressors.
For instance, a tornado yields different geographical impact
than a nuclear attack or an earthquake. Based on literature
survey, we have found three degradation functions, namely
Gaussian [6], circular [18] and linear [7], that may reasonably
characterize various real-world stressors. Figure 2 depicts one
realization of these three types of degradation functions. A
brief description of them is provided below.

Gaussian: Gaussian stressor intensity degrades according
to the Gaussian function as the spatial distance from the
location of occurrence increases. The variance of the Gaussian
function specifies the range and intensity of the stressor on
a geographic plane. Many real-world attacks and disasters
exhibit a Gaussian nature approximately [6].

Circular: Given a stressor center, a circular degradation
function is completely described by two parameters: radius
of the circle and intensity of the stressor at the center.
Intuitively, the only network component residing within the
circle is affected and the intensity at any location is inversely
proportional to its distance from the stressor-center.

Linear: We observed from the statistics of tornadoes that it
can occur in any geographical location in USA. Typically, a
tornado has a radius of 80 meters and length of 3 kilometers
[19]. We consider the Poisson point process to model the
locations of occurrence of the stressors. Unlike other disasters,
a tornado has almost equal strength over the region it spreads.
Hence, a uniform intensity all over the line is assumed.

B. Mapping stressor intensities to the network component
failure distributions

We denote the stressor(s) event by W = w. We adopt
the following assumption from [6]: Assumption 1. Upon
occurrence of a catastrophic stressor event (e.g., WMD,
HEMP, natural disaster, etc.), the initial failure of any network
component does not depend on other components. Due to
Assumption 1 and given a stressor event W = w, the joint

failure probability of all network components can be written as
the product of their individual failure probabilities. For nodes
we have p(v1, v2, ..., vN |W = w) =

∏N
i=1 p(vi|W = w)

and for links we have p((v1, v2), ..., (vN−1, vN )|W = w) =∏
(vi,vj)∈E p((vi, vj)|W = w), where p(vi|W = w) and

p((vi, vj)|W = w), denote the failure probability of the ith
node and the (vi, vj) link, respectively.

Next we find the failure probability of each network com-
ponent using the following procedure. Clearly, the likelihood
of network component failure increases with the intensity of
stressor and decreases with component’s internal tolerance.
Hence, we define the failure probability of ith node as

p(vi|W = w) = min

(
Iw(xi, yi)

Ivi(r, c)
, 1

)
, (1)

where Iw(xi, yi) ≥ 0 captures the aggregated intensity of
stressor at node vi’s location (xi, yi), and Ivi(r, c) > 0 is
the internal node tolerance. We define Ivi(r, c) by taking into
account two realistic physical attributes of a node: Ivi(r, c) :=
r + c, where r ∈ (0, rmax] is a parameter to capture the
resistance (e.g., shielding against HEMP [4]) assigned to a
node based on its importance (e.g., higher node-degree or a
backbone node) in the network. In addition, c ∈ (0, cmax]
captures the security requirement of a node being a network
component in the multi-level network. The values of r and c
can be estimated from the historical data. Note that, Iw(xi, yi)
is non-negative due to the fact that stressor intensity can only
be positive or zero. Intuitively, all network components possess
some resistance to the physical stressors that indicate Ivi(r, c)
is a positive quantity. Hence, we have 0 ≤ p(vi|W = w) ≤ 1,
thus p(vi|W = w) is a probability.

In order to find the link failure probability, we first find the
stressor intensities over all points on the link. Then we take
the maximal stressor intensity to consider maximum impact
of the stressor to that link. Since a link can have an infinite
number of points, we have taken L(vi,vj) number of points on
the (vi, vj) link to find the maximum stressor intensity. The
link failure probability for the (vi, vj) link can be written as

p((vi, vj)|W = w) = min

 max
l∈{1,...,L(vi,vj)

}
Iw(xl, yl)

I(vi,vj)(r, c)
, 1

 ,

(2)
where (xl, yl) is the location of the lth point on (vi, vj)
link. I(vi,vj)(r, c) is the tolerance of the (vi, vj) link that we
define as the average of internal tolerances of the two nodes
connected by the link: I(vi,vj)(r, c) :=

Ivi (r,c)+Ivj (r,c)

2 . The
averaging of node tolerances in calculating the link tolerance is
realistic. For example, if two nodes are very important then the
link connecting them is assumed to have a great importance.

C. Characterizing coupled vulnerabilities among network
components

We model the coupled vulnerabilities among network com-
ponents using a variation of SRLG. First note that the func-
tional vulnerability of a node directly affects the functionality



of all links connected to it. Clearly, if a node fails then the links
attached to it cannot be used anymore for communication.
Therefore, for a stressor event W = w, by taking into account
the coupled vulnerabilities between nodes and links, we find
the failure probability of (vi, vj) link as

psrlg((vi, vj)|W = w) = P((vi, vj) ∪ vi ∪ vj |W = w)

= p((vi, vj)) + p(vi) + p(vj)− p((vi, vj))p(vi)−
p(vi)p(vj)− p((vi, vj))p(vj) + p((vi, vj))p(vi)p(vj),

(3)

where the last line follows from Assumption 1. For simplicity
of notation, conditioning on the stressor event W = w is
removed from the second line. We summarize the link-failure
as Observation 1: The increase in failure probability of a
communication node increases the failure probability of all
links attached to it. Similarly, link failures can cause node
failures as well. For example, a HEMP wave that hampers a
link can be carried through the link to the nodes connected
to it. We can express the failure probability of the ith node
considering all associated link failures as

psrlg(vi|W = w) = P(vi ∪ (
⋂
j∈N

(vi, vj))|W = w)

= p(vi) + p(
⋂
j∈N

(vi, vj))− p(vi)p(
⋂
j∈N

(vi, vj)),
(4)

where {j ∈ N : vj ∈ Neighbor(vi)} is the index set of
the neighbors of node vi. Again, conditioning on a stressor
event W = w is dropped from the notation. We now have
Observation 2: The increase in failure probability of all links
attached to a node elevates the failure probability of that node.

V. PERFORMANCE MEASURES

In this section, we define several parameters to evaluate the
performance of network under different stressor scenarios.

Definition 1. Total expected capacity (TEC) of network: This
metric measures the accumulated average (expected) capacity
of all network links. Total capacity of a communication
network: C =

∑
(vi,vj)∈E Cij , where Cij is the capacity of

the (vi, vj) link. Cij is a random variable that we define as

Cij =

{
cij , with probablity p(cij) = 1− p((vi, vj)|W = w),

0, with probablity p(0) = p((vi, vj)|W = w),

where cij is the true capacity of the (vi, vj) link. We find the
TEC of a network by taking conditional expectation (E[·|·])
over C given a stressor W = w:

TEC = E[C|W = w] =
∑

(vi,vj)∈E

cij (1− p((vi, vj)|W = w)) .

Definition 2. Total expected number of node failures: Since
the number of functional-nodes is an important parameter
for any network, we calculate the total expected number
of node failures among N nodes after the occurrence of a
stressor event. We define a random variable that captures the
functionality of the ith node as follows

Xi =

{
1, if the ith node fails with probablity p(vi|W = w)

0, if the ith node is functional.

Fig. 3. A physical topology of a multi-level communication network com-
posed of three real networks: TeliaSonera, Level 3 and Sprint.

The total number of node failures can be expressed as XT =∑N
i=1 Xi. Then the total expected number of failed nodes is

E[XT |W = w] =
∑N

i=1 p(vi|W = w).
Definition 3. Max-flow between two nodes [3]: This param-

eter allows us to find the maximum data rate possible between
any two fixed nodes in a network.

VI. SIMULATION RESULTS

Figure 3 depicts a prototype of the physical infrastructure
of a multi-level communication network, which is composed
of three real networks: TeliaSonera, Level 3 and Sprint. The
physical topology dataset of these three networks are available
in [20]. Note that each of TeliaSonera, Level 3 and Sprint
networks consists of 21, 99 and 264 nodes, respectively,
which are located all over USA. Three connections from both
Level 3 and Sprint network are made with the TeliaSonera
network based on the geographical distance between nodes
and their associated node degrees. We have evaluated the
performance of the multi-level communication network under
different types of stressor scenarios. For each scenario we
have generated 500 random samples with 2 stressor events.
All links have a capacity of 1 Gbps (Gigabits per second) and
intermediate point distance on links is approximately 10 miles.
Node tolerances are assigned uniformly in (0, 2]. Moreover,
the radius of the circular stressor is assumed to be 200 miles.
For a line stressor, the line-direction is considered to be a free
parameter within 0-360 degrees, since the line stressor can
move to any direction after its occurrence.

Figures 4 and 5 depict the total expected number of node
failures and the TEC of the multi-level network, respectively,
for three different types of stressors. As expected, the TEC
decreases and the total expected number of node failures
increases with the increase of the parameter value of stressor.
Depending on the stressor, the horizontal axis (parameter of
the stressor) refers to the variance of the Gaussian stressor or
the intensity at the center for circular stressor or the length of
line for linear stressor. Notice that the network performance
becomes worse for all scenarios while we consider the effect
of SRLG among the network components. This is because
one component failure contributes to the increase of failure
probability of other components (Observations 1 and 2). For



Fig. 4. Total expected number of failed nodes in the network under different
types of stressors with (w) and without (w/o) SRLG effects.

Fig. 5. TEC of the network under various stressors with and without SRLG.

Fig. 6. Maximum flow between two fixed nodes with SRLG.

the particular parameter values assumed in simulation, the
multi-level communication network is less vulnerable under
Gaussian stressor; however, different parameter values may
yield different results, which is intuitive.

Figure 6 illustrates the Max-flow between two arbitrary
fixed nodes (denoted by S and D in Figure 3) in the network
following a stressor. Here we have directly calculated the Max-
flow considering the SRLG. Clearly, Max-flow achievable
between these two nodes under normal operation is 3 Gbps,
but due to the impact of stressors some nodes/links fail, thus
the actual Max-flow between these two nodes is reduced.

VII. CONCLUSIONS AND FUTURE WORK

The reliability of a network is largely affected by the
catastrophic attacks and natural disasters. We have presented a
multi-level communication architecture to capture the physical
infrastructure of the existing communication networks. We
have described different types of correlated stressors that can
potentially degrade the reliability of a communication network.
We have also calculated the coupled-vulnerabilities among

network components using a realistic SRLG formulation. Sim-
ulation results have shown that the inherent coupling among
communication-network components notably increases their
vulnerabilities to the large-scale stressors.

In the future, the dynamics of network functionality needs to
be studied under temporal correlation among different types of
stressors and robust techniques need to be devised to minimize
the impact of catastrophic stressors on the network.
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[1] E. K. Çetinkaya et al., “Modelling communication network challenges
for future internet resilience, survivability, and disruption tolerance: A
simulation-based approach,” Telecommunication Systems, vol. 52, no. 2,
pp. 751–766, 2013.

[2] H. Haddadi et al., “Network topologies: inference, modeling, and
generation,” IEEE Communications Surveys & Tutorials, vol. 10, no. 2,
pp. 48–69, 2008.

[3] S. Neumayer et al., “Assessing the vulnerability of the fiber infrastruc-
ture to disasters,” IEEE/ACM Transactions on Networking, vol. 19, no. 6,
pp. 1610–1623, 2011.

[4] C. Wilson, “High altitude electromagnetic pulse (hemp) and high power
microwave (hpm) devices: Threat assessments,” DTIC Document, Tech.
Rep., 2008.

[5] J. Borland, “Analyzing the internet collapse,” ABC News, 2008.
[6] M. Rahnamay-Naeini et al., “Modeling stochastic correlated failures and

their effects on network reliability,” in Proceedings of Int. Conference
on Computer Communications and Networks. IEEE, 2011, pp. 1–6.

[7] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in Proceedings INFOCOM. IEEE, 2010, pp. 1–9.

[8] P. K. Agarwal et al., “Network vulnerability to single, multiple, and
probabilistic physical attacks,” in Proceedings MILCOM. IEEE, 2010,
pp. 1824–1829.

[9] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology
design for survivable routing of logical rings in wdm-based networks,”
IEEE Journal on Selected Areas in Communications, vol. 22, no. 8, pp.
1525–1538, 2004.

[10] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new
approach to the design of wdm-based networks,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 4, pp. 800–809, 2002.

[11] D. J. Strauss, “A model for clustering,” Biometrika, vol. 62, no. 2, pp.
467–475, 1975.

[12] D. Papadimitriou et al., “Inference of shared risk link groups,” IETF
Draft, OIF Contribution, OIF, vol. 66, p. 2001, 2001.

[13] H.-W. Lee, E. Modiano, and K. Lee, “Diverse routing in networks with
probabilistic failures,” IEEE/ACM Transactions on networking, vol. 18,
no. 6, pp. 1895–1907, 2010.

[14] Z. Kong and E. M. Yeh, “Resilience to degree-dependent and cascading
node failures in random geometric networks,” IEEE Transactions on
Information Theory, vol. 56, no. 11, pp. 5533–5546, 2010.

[15] D. Magoni, “Tearing down the internet,” IEEE Journal on Selected Areas
in Communications, vol. 21, no. 6, pp. 949–960, 2003.

[16] J. P. Sterbenz et al., “Resilience and survivability in communication
networks: Strategies, principles, and survey of disciplines,” Computer
Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[17] E. K. Cetinkaya et al., “Multilevel resilience analysis of transportation
and communication networks,” Telecommunication Systems, vol. 60,
no. 4, pp. 515–537, 2015.

[18] S. Neumayer and E. Modiano, “Network reliability under random
circular cuts,” in IEEE Global Telecommunications Conference. IEEE,
2011, pp. 1–6.

[19] “Tornado: National oceanic and atmospheric administration: Storm
prediction center and wikipedia,” http://www.spc.noaa.gov/, accessed:
2016-06-12.

[20] J. P. Sterbenz et al., “Ku-topview network topology tool,” http://www.
ittc.ku.edu/resilinets/maps/, The University of Kansas, 2010.


