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Abstract—Resource management (RM) is a critical action in
systems with limited resources such as sensor networks. Efficient
RM depends heavily upon the availability of accurate information
on the state of available resources. However, exchange of state
information incurs an overhead on the system. In this paper, the
sensing and computing resource management in sensor networks
is considered. A lossless, distributed source-coding framework
is presented to model the exchange of state information. The
framework enables the characterization of the interplay between
the performance and overhead of RM by leveraging the corre-
lation among the state information of various nodes. Moreover,
the proposed framework enables an improved estimate of the
lower bound for the minimum control overhead necessary to
accurately describe the state of nodes in the network. This
improvement is achieved by exploiting the correlation among the
state information of nodes as well as the available information
on prior resource allocation actions as side information.

Index Terms—Sensor networks, resource management, dis-
tributed computing, control overhead, information theory, dis-
tributed source coding, side information.

I. INTRODUCTION

Resource management (RM) is a critical action in systems

with limited resources such as sensor networks. In this paper,

we focus on the computing and sensing resource-management

problem in sensor networks. Managing sensing and computing

resources is important in many sensor-network applications

such as pervasive computing, mobile computing, battlefield

surveillance, control and situational awareness, and target

tracking [1]–[3]. In such applications local agents (users and

sensor nodes) in the field as well as remote users submit

sensing and computing requests to the system. Sensor net-

works respond to these requests by means of collaborative

processing while using distributed sensing and computing

resources. In this paper, resource allocation refers to assigning

tasks associated with requests to sensor nodes. Hence, we

use the term task assignment (TA) and resource allocation

interchangeably in this paper. Furthermore, the proposed ana-

lytical framework in this paper can be applied to any arbitrary

resource management problem in distributed systems such

as dynamic wavelength assignment in optical networks and

computing resource management in cloud systems.

Efficient RM depends heavily upon the availability of ac-

curate resource-utilization information, which we term state

information [3]–[6]. However, the inevitable exchange of state

information consumes valuable energy and communication

resources and incurs a cost in the system termed RM control

overhead. Recently, information theory has been used to

characterize the control overhead of networks [7]–[10], where

the control overhead is thought of as the rate of information

exchange. In such works, point-to-point rate-distortion theory

[11] has been utilized to capture the trade-off between control

overhead and the distortion in the state information (conse-

quently the performance of a given protocol).

Different from the rate-distortion approach, here we present

a lossless, distributed source-coding framework to characterize

the interplay between RM performance and the overhead it

incurs in sensor networks. This has been done by taking into

account the correlation among the state information of various

nodes while observing that an RM protocol can affect the

correlation among the state information of nodes. Notably,

our framework ties each RM protocol to an overhead. This

is because in a lossless distributed source-coding framework

the correlation among the state information specifies the rate

region for accurate communication, determined by constraints

on the rate of each node and sum of the rate of nodes. We also

derive an improved lower bound for the rate region (associated

with an arbitrary RM protocol) by exploiting the correlation

among the state information of nodes as well as knowledge of

prior resource-allocation actions as side information.

We emphasize that the interplay addressed by rate-

distortion–based formulations is different from that addressed

by our framework. Rate-distortion–based formulations char-

acterize the trade-off between the rate of information and

distortion by considering a class of codes that satisfies the rate

and distortion constraints. On the other hand, our framework

characterizes the interplay between performance of RM and

its overhead by means of a class of protocols, which each

satisfies certain performance and overhead while assuming

sensor-network applications for which distortion in the state

information is not tolerable. For example, a constraint on

the control overhead will yield a class of admissible RM-

protocols, from which we can extract the best achievable RM

performance.

This paper is organized as follows. A brief overview of

related work is presented in Section II. Section III defines the

sensor network and resource management model. In Section

IV, a distributed source-coding framework for exchanging the



state information of nodes is formulated and its rate region

is characterized. Numerical results for an example sensor

network and discussion on the interplay between the control

overhead and RM performance are presented in Section V.

Finally, concluding remarks are presented in Section VI.

II. RELATED WORK

Recently, information theory has been adopted for character-

izing the control overhead of networks. The pioneering work

presented by Gallager [12] is one of the earliest contributions

that used information theory in characterizing the network

overhead for tracking source and receiver addresses. In [7] and

[8] the minimum overhead of maintaining state information

(link state and motion state, respectively) to be used in routing

protocols across a mobile ad hoc network is formulated as a

rate-distortion problem. The assumption in [7] and [8] is that

the state information associated with various nodes/links are

mutually independent; hence, the rate-distortion formulation

is considered for a single component. The authors of [10]

use rate-distortion theory to investigate the optimal timing for

updating the bandwidth information of the links. In [9], the

relation between network performance and information rate is

captured by extending the definition of distortion measure to

capture network performance.

It is to be noted that all the aforementioned works con-

sider point-to-point information theory in characterizing the

interplay between network overhead and distortion. Network

information theory [11], on the other hand, provides strong

tools for characterizing the information exchange in a dis-

tributed fashion when there is correlation among the state

information of different sources. However, to the best of our

knowledge networked information theory has not been used

heretofore in investigating the control overhead of networks.

While distributed source coding theory has been widely used

in sensor networks in the last decade, its utility has been

limited to the context of distributed sensing [13]. Although

tracking the state of nodes in a network can be viewed as a

distributed-sensing problem, the signal of interest here is tied

to the network characteristics, protocols and policies, which

can collectively define the performance of the network. Here,

the distributed source coding model may warrant extension

or modifications to capture the information characteristics and

their availability in various part of the network. In this paper

we use the generality of distributed source coding theory to

characterize the interplay between performance and the control

overhead of RM in sensor networks through the correlation

among state information of various nodes.

III. SYSTEM MODEL

In this section, we model sensor networks and resource

management. The notation and terminology used in this paper

are summarized in Table I. Consider a sensor network con-

sisting of clusters of sensors as shown in Fig. 1. Each cluster

has a control node (CN) that is responsible for monitoring

the resource utilization, maintaining the state information of

nodes and performing resource allocation. Here, the problem

of investigating the control overhead of sensor networks is

TABLE I
TABLE OF NOTATIONS

N , Number of nodes in the cluster

Qi(t) , Stochastic queue size of node i at time t

tU , Update instance in which nodes send state information to CN

tS , Sampling instance in which nodes take samples of their Qi(t)
tA , Task assignment instance at which CN assigns tasks to sensors

n , Number of tS and tA instances in a [tUi−1
, tUi

]

Mj , Random number of tasks arrived to CN during [tAj−1
, tAj

]

Yij , Random number of tasks assigned by CN to node i at tAj

Yi , The random variable associated to node i, which we shall
view Yijs as i.i.d samples of it

Pi , The random variable associated to node i, which its realiza-
tions Pij , represents the number of tasks being processed by
node i during the interval [tSj−1

, tSj
]

Lk
ij , Random number of tasks assigned to node i by local agent

k, during the interval [tSj−1
, tSj

]

Lij ,
∑

K Lk
ij , whereK is the number of local agents in the cluster

Li , The random variable associated to node i, which we shall
view Yijs as i.i.d samples of it

Ui , The random variable associated to node i, which its realiza-
tions Uij , represents the number of tasks assigned to node i

by its internal system during the interval [tSj−1
, tSj

]

Xij , Random jump size in the queue size of node i i.e., |Qi(tSj
)−

Qi(tSj−1
)|

Xi , The random variable associated to node i, which we shall
view Xijs as i.i.d samples of it

FTA , Task assignment protocol/function

W (FTA) , Overhead of state information exchange associated with FTA

Z(FTA) , Performance measure of FTA

C(FTA) , Correlation among Xis resulted by FTA

broken down to the same problem for individual clusters of

nodes. Hence, we will focus on one cluster hereafter with the

understanding that the same procedure will be applied to all

clusters of the network.

Fig. 1. A sensor system and its clusters.

A. Resource allocation and information exchange

The main role of sensor nodes in a cluster is to process tasks

and send the state (resource utilization) information to the CN.

We assume that the state information of nodes may be used by

RM or other network protocols. We use the queue size of tasks

(awaiting tasks) in a node to estimate the resource availability

at the node. We term the intervals [tUi−1
, tUi

], [tSj−1
, tSj

],
and [tAj−1

, tAj
] as update interval, sampling interval, and TA

interval, respectively, as shown in Fig. 2. We assume that each



update interval consists of n sampling and TA intervals. Note

that for convenience we assume equal number of sampling and

TA instances in an update interval; however, these instances

are not assumed to be synchronized.

A sensor node i encodes and then sends n samples of its

queue size Qi(t), sampled at the instants tSj
s, to the CN at

the end of each update interval. We assume that the CN and

its constituent nodes in a cluster communicate directly over

noiseless links. We further assume that sensing and computing

requests arrive at the CN at random times while each request

is comprised a random number of tasks. The CN buffers

tasks upon arrival and assigns them (total Mj tasks) to the

nodes at tAj
based upon a prescribed (static) RM protocol.

We represent the way that CN assigns tasks to sensor nodes

by a function FTA, which may follow different objectives such

as load balancing and minimizing energy consumption of the

network. More specifically, we write FTA(Mj) = Y(tAj
),

where Y(tAj
) = (Y1tAj

, Y2tAj
, . . . , YNtAj

) with the con-

straint
∑N

i=1 YitAj
= Mj . Refer to Table I for the definition

of notations. Here, the Yijs are independent and identically

distributed (i.i.d) across time (i.e., for j = 1, . . . , n).

Fig. 2. Update, sampling and TA intervals.

B. Dynamics of queue sizes

The dynamics of the queue size of a node is governed by the

random variables associated with the number of tasks being

processed at the node, tasks being generated in the internal

system of the node (by the node’s operating system or software

agents), tasks being received from local agents, and tasks being

assigned to the node by the CN. Note that samples of queue

sizes, Qi(t), at instants tSj
for j = 1, .., n are correlated due

to the dependency of the queue size at any sampling time on

the number of tasks queued at the node at previous sampling

times. However, jumps in the queue size are independent in

time because all the random variables affecting the queue size

can be assumed to be independent in time (i.e., instants tSj

for j = 1, .., n). More precisely, we represent the dynamics of

the queue size by jumps in the queue size as

Xi = Yi + Ui + Li − Pi. (1)

C. Correlation among random variables

As depicted for a generic random variable in Fig. 3,

the random variables affecting the queue size of a node

according to (1) are independent in time but they may be

correlated across sensor nodes (except for Ui and Pi, which

are independent across nodes because they are node specific).

Generally, the Yis of different nodes can be correlated due to

Fig. 3. A random matrix for a generic random variable.

the adoption of certain FTA by the CN. We will consider

the following examples of FTA, which will illustrate the

correlation among the Yis of different nodes due to the

system adopting a resource-allocation protocol, FTA, say. First

consider the protocol FTA1
that randomly distributes tasks

among sensor nodes based upon a uniform probability mass

function. Clearly, it is expected in this case that the Yis exhibit

minimum correlation; note however that correlation may still

exist due to the constraint
∑N

i=1 Yij = Mj . In the second

example, FTA2
evenly distributes tasks among nodes, which

results in a high degree of correlation among the Yis. Other in-

between scenarios can be associated with the FTAs that exploit

the characteristics of the nodes and the state information in

implementing resource allocation.

Similarly, the Lis, for i = 1, . . . , N , may be correlated

due to task assignment protocol of local agents in the cluster

(the way local agents directly assign tasks to the nodes). As

the first example of task assignment protocol, let us assume

that agents assign tasks to their closest node as depicted in

cluster 2 of the network shown in Fig. 1. In this scenario,

we assume nodes and agents are not mobile; as such, we can

assume that each agent is associated to a specific sensor node

(e.g., the closest) and will only submit tasks to that node. In

this case, the correlation among Lis is minimum because of

the random and independent task assignment of agents. In the

next example, we assume that agents evenly distribute their

tasks among all the nodes in the cluster as has been shown

in cluster 1 in Fig. 1. In this case, there is a higher degree of

correlation among the Lis than that in the previous example.

Once again, in-between scenarios can exist for example when

users assign tasks to their closest node while they are mobile

and the closest node change in time.

Now based upon the correlation among the random variables

affecting the queue size of a node, we can conclude that Xis

of different nodes (for i = 1, . . . , N ) can also be correlated.

We represent the correlation among Xis by C(FT A), which
as discussed earlier, depends upon FTA, the task-assignment

protocol of agents and the RM policy.

IV. INFORMATION-THEORETIC FRAMEWORK

A. Distributed Source Coding Model

Assume that at each update instant node i uses its encoder
to encode Xn

i = (Xi1, Xi2, . . . , Xin) separately from other

nodes and then sends it to the CN. We term the informa-

tion about the prior resource-allocation actions, Yis, as side



information. We assume the statistical characteristics of Xi

and Yi are available, as discussed in Section III. The CN

uses its decoder to decode and reconstruct the state of nodes

using the correlation among Xis and the side information

Yis. Specifically, the reconstructed state of node i is denoted

by X̂n
i = (X̂i1, X̂i2, . . . , X̂in) and the probability of error

is P
(n)
e , P

{

(X̂n
1 , . . . , X̂

n
N) 6= (Xn

1 , . . . , X
n
N)

}

. Figure 4

illustrates this formulation schematically for a cluster with N
nodes. Our formulation is an extension of Slepian-Wolf The-

orem [14] to distributed lossless source coding with multiple

side information.

An N -tuple (R1, . . . , RN ) is said to be achievable for

distributed lossless source coding if there exists a sequence

of codes with these rates such that lim
n→∞

P
(n)
e = 0. Note that

the control overhead of a specific RM protocol is defined as

W (FTA) ,
∑

i

Ri. (2)

In our framework, protocol FTA leads to certain level of

correlation among the state information, C(FTA), which sub-

sequently specifies the overhead W (FTA) based upon the

distributed source coding model. Therefore, the performance

Z(FTA) and overhead W (FTA) are tied together through

C(FTA), which enables the characterization of the interplay

between performance and overhead of the RM.

Fig. 4. The proposed distributed source coding model with side
information to characterize the control overhead.

For the ease of reference and discussion of the theory, we

define:

Formulation 1. A distributed source coding problem that

does not use Yis and nor does it use the correlation among

Xis. This formulation is equivalent to N separate Shannon’s

lossless source coding problems.

Formulation 2. A distributed source coding problem that

uses Yis but it does not use the correlation among Xis. This

formulation is equivalent to N conditional lossless source

coding problems (single source coding problem with side

information at the encoder and the decoder [11]).

Formulation 3. A distributed source coding problem that

uses the correlation among Xis but it does not use Yis. This

formulation is a Slepian-Wolf problem.

Formulation 4. A distributed source coding problem that

uses both Yis and the correlation among Xis. This is our

formulation in this paper.

Note that Formulations 1 and 2 fall in the area of point-to-

point information theory.

B. Characterizing the rate region

We begin the characterization of the rate region of Formu-

lation 4 by considering the distributed source coding model

for a cluster with two nodes. The achievable rate region

of the formulations mentioned in the last section has been

depicted in Fig. 5. Note that in Fig. 5, we have shown the

rate region of Formulations 2 and 3 in the special case when

H(X1|X2) < H(X1|Y1) and H(X2|X1) < H(X2|Y2), where
H(.|.) represents the conditional entropy. Characterization of

the achievable rate region of Formulation 3 has been presented

by Slepian and Wolf in [14]. The achievable rate region

of Formulation 2 is also known [11]. Characterizing the

Fig. 5. The achievable rate region of the four formulations.

achievable rate region of the Formulation 4 is straight forward

and can be explained as follows. Consider a special case in

which there is only one encoder that jointly encodes the state

information of the two nodes while the CN decodes the code

for both sources using side information. In this case the outer

bound of the sum-rate, defined as R1+R2, for Formulation 4

can be written as R1 + R2 ≥ H(X1, X2|Y1, Y2). In general,

however, this bound may not be achievable since nodes are

encoding the sources separately (this is why it is termed outer

bound). Now consider the case when nodes encode the sources

separately while each node having access to the other node’s

state information. In this case, the rate of a node should satisfy

R1 ≥ H(X1|X2, Y1, Y2) based on Formulation 2. Combining

these bounds results in the outer bound for the optimal rate

region of Formulation 4, which can easily be shown to be

achievable and tight (with a proof similar to that of the Slepian

Wolf Theorem [15]) and therefore improves the lower bound

on the minimum information rates.

Theorem 1. The optimal rate region for the problem in

Formulation 4 with two nodes is

R1 ≥ H(X1|X2, Y1, Y2),

R2 ≥ H(X2|X1, Y1, Y2) and

R1 +R2 ≥ H(X1, X2|Y1, Y2).

Theorem 1 can be extended to an arbitrary number of nodes

in the cluster as follows.

Theorem 2. Let S ⊂ {1, 2, ..., N}. The optimal rate region

for the problem in Formulation 4 with N nodes is
∑

j∈S

Rj ≥ H
(

X(S)|X(Sc), Y (S ∪ Sc))
)

,

where X(S) is the set of Xis for i ∈ S and X(Sc) and



Y (S ∪ Sc) are defined likewise. Note that in this special

case of distributed source coding problem the rate region of

the framework depicted in Fig. 4 would be the same as the

one stated by Theorem 1 and 2 even if the side information

Yis were only available at the decoder. However, in lossy

distributed source-coding problems these two cases would

result in different rate regions. The next point to note here

is that the lower bounds derived based on these approaches,

are asymptotically achievable (as the number of samples in

an update interval goes to infinity, i.e., n → ∞); hence, they

provide bounds on the overhead of the network [7]–[10].

V. NUMERICAL EVALUATION

Theorems 1 and 2 provide analytical expressions of the

lower bound for the minimum state information rate of nodes

in a cluster. In this section, we consider a specific example of

a sensor network and provide the numerical results calculated

for the minimum control overhead of RM. For simplicity, we

consider a cluster with two nodes.
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Fig. 6. (a) State information rate of node 1, and (b) total control
overhead (sum of the rates of nodes) as a function of the dependency
between X1 and Y1.
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Fig. 7. (a) State information rate of node 1, and (b) total control
overhead (sum of the rates of nodes) as a function of the dependency
between X1 and X2.

A. Settings of the example

We indicated in Section III that the Yis of different nodes

may be correlated due to FTA. To model the dependency be-

tween Y1 and Y2 in our example we simply use Y1 = Y2+∆Y .

In this model FTA affects the correlation between Y1 and Y2

(and consequently the correlation between X1 and X2, i.e.,

C(FT A)) through ∆Y , which represents the number of excess

tasks assigned to node 1 compared to node 2. In a similar way,

the correlation between Lis can be modeled by L1 = L2+∆L.
Here, ∆L depends on the task assignment protocol of local

agents. Note that the correlation among Lis also affect the

correlation among Xis. Therefore, FTA and task assignment

protocol of local agents affect C(FT A) through Yis and Lis.

In our example, we assume independent Poisson distributions

for random variables with random-variable-specific Poisson

parameters. With the above preliminaries and the dynamics

of the queue size described in (1), we write X1 and X2 as

X1 = Y2 +∆Y + U1 + L2 +∆L− P1,

X2 = Y2 + U2 + L2 − P2. (3)

In our calculations, we have assumed λY2
= 6, λL2

= 3,
λU1

= λU2
= 1, λP1

= λP2
= 4, and λ∆L = λ∆Y =

1. Since all the random variables have Poisson distributions,

we can numerically calculate the entropy, joint entropy and

conditional entropy for different combination of the presented

random variables. Moreover, we use the fact that sum of two

independent Poisson random variables is a Poisson random

variable and the difference of two independent Poisson random

variables with parameters λ1 and λ2 has Skellam distribution,

p(k;λ1, λ2) = e−(λ1+λ2)(λ1/λ2)
(k/2)I|k|(2

√

λ1λ2),

where Ik(z) is the modified Bessel function of the first kind.

The assumption on the Poisson distribution is commonly

adopted in literature [16], [17] for the random number of tasks.

B. Numerical results

According to (1), Xi and Yi may be correlated and the level

of correlation between them is affected by the dynamics of

the network and the node through Ui, Pi, and Li. In general,

as the randomness in these variables increases the correlation

between Xi and Yi decreases and rate of state information

increases. In the extreme case, for which events in the system

are deterministic (e.g., deterministic task processing time) the

Xi values can be calculated based upon the Yi values at the

CN, and therefore, there is no need to exchange the state

information and the control overhead will be zero. In our

example, when Ui, Pi and Li have high level of randomness

(large λ parameter) then the correlation between Xi and Yi

decreases. Figure 6-a depicts the minimum state-information

rate of node 1 as a function of λL1
, for Formulations 1, 2, and 4

calculated at points A, B, and D shown in Fig. 5, respectively.

In our calculations, we have fixed the Poisson parameter of

all the random variables in the system and only changed λL1
.

From Fig. 6-a, we observe that as the dependency between

X1 and Y1 decreases the rate of node 1 increases. The sum of

the rates of nodes (total control overhead) for the formulations

are calculated based on the sum-rate constraint in Theorem 1

and shown in Fig. 6-b. Figure 6-b also shows that the sum

of the pair of rates shown in Fig. 6-a equals to the sum-rate

constraint value calculated based on Theorem 1. This is due

to the special position of the selected pair of rates (in Fig. 5).

We next investigate the effect of correlation betweenX1 and

X2 on the control overhead. To see this effect in our example,

we fixed the Poisson parameter of all the random variables



and only changed λ∆Y and λ∆L (we assume λ∆Y = λ∆L).

The minimum state-information rate of node 1 for Formulation

3 (calculated at point C in Fig. 5) and Formulation 4 are

represented in Fig. 7-a. The minimum total control overhead

for Formulation 3 and 4 are shown in Fig. 7-b. Notably

Formulation 4 provides the smallest lower bound among other

formulations for the minimum information rate of the nodes.

C. Interplay between performance and overhead

Recall that resource allocation protocols may affect the

correlation betweenX1 andX2. In the results shown in Fig. 7,

each λ∆Y value on x-axis can be interpreted as the representor
of the FTAs, which yields Y1 = Y2+∆Y with ∆Y following

a Poisson distribution with parameter λ∆Y . The same can be

said for λ∆L and the task assignment protocols of local agents.

Note that each λ∆Y on x-axis can be mapped to a C(FTA)
value. Similarly, the y-axis represents the control overhead of

FTA, i.e., W (FTA). With this framework in place one can

compare the lower bound on the minimum control overhead

of various FTAs analytically. Next. if the performance of

FTA is measured through a performance metric such as task

completion time, energy utilization or life time of sensor

network, then the interplay between Z(FTA) and W (FTA)
can be characterized analytically.

To illustrate the interplay between the performance and

control overhead of RM, consider the policies FTA1
and FTA2

introduced in Section III. The performance of FTA1
in terms

of task completion time and load balancing has been shown

to be more efficient than that for FTA2
in certain applica-

tions when the size of requests have a Poisson distribution

[16], [17]. Therefore, in this scenario Z(FTA1
) > Z(FTA2

).
Meanwhile, in this case C(FTA1

) < C(FTA2
) due to the

small degree of correlation among the Yis resulted from FTA1
,

which, in turn, implies W (FTA1
) > W (FTA2

). This example

demonstrates a trade-off between performance and the control

overhead of RM, which can be captured analytically through

our framework. Similar statements can be made about the task

assignment protocol of local agents. For example, the control

overhead in the task-assignment protocol shown in cluster 2

of the network in Fig. 1 is larger than that of cluster 1 as a

result of the different degree of correlation among the Xis.

Hence, our framework paves the path to the characterization

of the overhead-admissible RM protocols, from which we can

extract the best achievable RM performance.

VI. CONCLUSIONS

Efficient resource management depends heavily upon the

availability of accurate information on the state of available re-

sources in the system. However, exchange of state information

incurs an overhead on the network. In this paper, we formu-

lated the exchange of state information in the network using a

lossless, distributed source coding framework. We have shown

that resource-management policies may lead to different levels

of correlation among the state information of nodes. We then

exploited the correlation among the state information of nodes

to analytically characterize the interplay between the resource-

management performance and overhead in a lossless source-

coding framework. This framework provides an analytical tool

to compare the performance and control overhead of various

resource management policies. Moreover, we have derived an

improved estimate of the lower bound for the minimum control

overhead of RM by utilizing the correlation among the state

information of nodes as well as the available information on

prior resource-allocation actions as the side information.
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