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Abstract—Edge computing provides an ideal platform to 
enable many critical and time-sensitive applications in 
monitoring and operation of critical cyber-physical systems, 
such as smart grids. In this paper, we consider one of the key 
operations for smart grid’s reliability, which is situational 
awareness and discuss the role that the edge computing can play 
to enhance this operation by providing distributed state 
estimation (DSE) locally at the edge nodes. We specifically focus 
on the network of the phasor measurement units (PMUs) as an 
example of the industrial internet of things in smart grids and 
discuss the edge-computing platform architecture to enable data 
analytics for DSE using the PMU time-series. We discuss that it 
is important to consider the physics of the smart grid in 
designing the edge-computing layer. As an example, we present 
a data-driven method for detecting power line trips using the 
PMU data and the designed physics-aware edge-computing 
platform.  
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I. INTRODUCTION  
Smart grids are examples of a critical Cyber Physical 

System (CPS), which provide the essential electricity service 
to the society. Efforts toward making smarter grids are leading 
to a large scale Electric Grid of Things (EGT). The EGT can 
be divided into two layers: (1) The general Internet of Things 
(IoT) layer with general IoT needs, which are mostly deployed 
close the edge (customers) of the smart grid such as smart 
homes for energy management and customer profiling. (2) 
The Industrial Internet of Things (IIoT) layer with more strict 
requirements on latency, security and connectivity. This layer 
is a part of utility infrastructures and is deployed in 
distribution, generation (including renewable sources) and 
transmission layers of the system with mission-critical and 
real-time applications for monitoring and control of smart 
grids. For instance, advance metering infrastructure in the 
distribution layer used for network planning and demand 
response management is an example of IIoT. Another 
example of IIoT layer in smart grids is the network of PMUs 
for situational awareness, which is the focus of this paper. 

In general, the EGT has the goal of enhancing the 
performance, reliability, and security of the grid and to do so 
it relies on the ubiquitous large-scale information acquisition, 
communication, storage, and processing capabilities. 
Therefore, EGT needs to be accompanied with 
communication and computation technologies that enable 
such capabilities. The need for such a computation and 
communication platform as well as the applications and 
operations that can benefit from it in smart grids, have been 
discussed in literature [1-14]. For instance, communication 
capabilities, including wireless communication networks 
based on 5G cellular networks for IoT in smart grids are 

discussed in [11].  For the computational capabilities, cloud 
computing has been introduced as a potential platform for 
processing and storing energy data from EGT [12]. However, 
large latency limits the use of the cloud platform for critical 
low latency applications in the IIoT layer of  EGT, such as, for 
reliability related monitoring and control of the smart grid. 
The limitations of the cloud as the computation platform for 
IIoT has motivated the use of edge/fog computing that pushes 
the computation and storage services to the edge of the 
communication network (such as base stations) to reduce the 
latency and the traffic in the core network by localized 
computations, processing and storage capabilities. The 
application of edge computing and IIoT for critical functions 
and operations in smart grids is an emerging topic. 

One of the key operations for smart grid’s reliability is 
situational awareness performed with the help of the wide 
area monitoring system (WAMS). This operation relies on 
sensors collecting data from the system and thus relies on 
IIoT. State estimation, especially with new methods based on 
data-driven approaches, is a critical real-time operation of 
WAMS, which is sensitive to communication delays and has 
high computational complexity for processing of large 
volume of PMU data. The reliable operation of the smart grid 
largely depends on accurate and real-time estimates of the 
state of the system. Many of the conventional and data-driven 
state estimations are traditionally performed centrally at a 
central control system (e.g., using Supervisory control and 
data acquisition-SCADA) and when necessary using the 
cloud computational resources. However, centralized state 
estimations will not be effective and adequate for future smart 
grids with high penetration of renewable energy sources and 
strict reliability requirements. Such requirements suggest the 
need for dynamic and distributed state estimations (DSE). 
The edge platform is a suitable environment to implement the 
critical, time sensitive DSE. DSE and condition monitoring 
using edge computing can reduce the latency of such critical, 
time-sensitive operations by providing local estimates that 
can generate early warnings when necessary to improve the 
reliability of the smart grid. In addition, local warnings and 
estimates can notify multiple control centers and enhance the 
reliability by adding redundancy in case a system or server 
fails in one region and center. A recent major blackout event 
on June 16, 2019 in Argentina, Paraguay and Uruguay, left 
48 million people without electricity [15]. An EGT based 
early warning system may improve the situational awareness 
over such large geographical region and allow operators more 
time to take preventive measures to mitigate the effect of 
failures and risks of large blackouts. 
 
In this paper, we discuss the edge-computing platform 
architecture to enable data analytics for DSE in smart grids. 
We specifically discuss that it is important to consider the 
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physics of the smart grid in designing the edge-computing 
layer. To show how the physics of the system can be used in 
designing the edge platform, we use a data-driven method to 
exploit the information about the dynamics of component 
interactions embedded in the PMU time series and design the 
architecture of the edge layer based on such information. We 
show that using such edge architecture, we can provide local 
state estimates and early warning for events in the smart grid.  

II. RELATED WORK  
A large body of work has been emerging on the application 

of IoT, cloud computing, edge/fog computing and big data 
analytics in smart grids (examples include the works in [1-
14]). In this paper, we briefly review the works on edge 
computing in smart grids as they are closer to the topic of this 
work. 

The majority of edge computing applications in smart grid 
have been focused on supporting applications that are close to 
the customer level (close to smart homes) or in the distribution 
layer of the smart grid. Examples of such applications include 
customer profiling, energy scheduling in smart homes [6, 13] 
and advance metering infrastructure [4, 6, 7]. For instance, the 
work in [6] discusses the residential energy storage planning 
and the work in [6] demonstrates energy management as a 
service over the Fog computing platform both in the home 
level and microgrid level. The edge computing platform has 
also been proposed to support intelligent electric vehicle 
services in smart grids [5]. The work in [4] discusses a 
microgrid framework that uses a energy storage and fog data 
system to provide reliable power to critical and emergency 
loads. 

The application of edge computing for mission-critical and 
real-time applications, such as monitoring and control of smart 
grids, is an emerging topic and needs more attention.  Among 
the few works that discuss critical smart grid operations using 
edge platform is the work in [14], which proposes a platform 
for condition monitoring (e.g., monitoring the health of 
machines in the system including electric motor (A.C), DC 
motors, or generators) based on statistical analysis of time 
series from various machines using the edge platform. In [14], 
a database-dictionary system small enough to fit into the 
memory of edge data-analytic devices is developed, which 
reduces the communication for exchange of energy data to the 
cloud. Using the proposed platform, only fault report and 
recommendations from the edge layer will be sent to cloud. In 
general, huge data generation in the IIoT layer of the EGT and 
real-time decision-making requirements make energy data 
analytics one of the key applications on the edge computing 
layer of the system [14, 16] for smart grids. Big data aspects 
of the energy data and the need for platforms for handing such 
data has also been discussed in literature [9]. 

 Another example of critical smart grid operations using 
edge platform is presented in [11], which proposes two 
distributed state estimation methods for the smart grid that can 
be deployed over a distributed architecture based on edge 
computing. Moreover, the work in [13] discusses caching 
mechanisms to optimize the organization and utilization of the 
limited cache size for situational awareness applications in 
smart grids. 

Although the edge computing paradigm is still gaining its 
grounds in the industry, some works have emerged on 
methods to improve this platform for smart grid applications. 

For instance, the work in [5] introduced the use of a Fog 
computing coordinator into the fog computing architecture at 
the Fog layer for IoT applications in smart grid to aim at a 
better coordination of the distributed fog nodes in order to 
reduce delay. Nazmudeen et al., in [17] focus on improving 
communication metrics among smart meters for AMI with the 
use of an intelligent router as a fog device while using data 
aggregation approach. 

III.   ARCHITECTURE OF EDGE-COMPUTING ENABLED 
EGT 

In this section, we discuss the architecture of the Edge-
enabled EGT to support critical applications in smart grids. 
We specifically focus on the edge platform architecture that 
can support the state estimation operation in the smart grid to 
be discussed in Section IV. The edge-enabled IoT for smart 
grids can be divided into physical layer, IoT layer, edge layer 
and central computing and control layer (Fig. 1). Each of the 
layers are discussed next. 

The physical layer of the system includes the utility’s 
electric infrastructure, including generators, substations, 
transmission and distribution lines, transformers and storage 
devices (i.e., electrical components). The physics of 
electricity, demand and generation variations and the 
operations policies determine the dynamics of the state of 
these components.  

The IIoT layer includes sensors and actuators ranging from 
smart appliances and smart meters to synchronized phasor 
measurement units (PMUs) for measuring voltage and current 
phasors at various points of the system, field-bus control and 
legacy Remote Terminal Units (RTU) as the actuators in the 
system. In this work, we mainly focus on the PMUs in the IIoT 
layer as the application of interest for this work is state 
estimation using PMU time series. 

The edge layer of this system includes edge nodes and 
edge coordinators. The edge nodes provide processing and 
storage requirements to support the critical operations of the 
smart grid (in this case state estimation). Edge nodes and 
coordinators are distributed geographically over the system 
and thus the operations need to be developed in distributed 
approach. The connectivity among the edge nodes and 
coordinators and the components of the IIoT layer (in this case 
PMUs) is a part of the architecture that needs to be designed. 
This aspect of the architecture has been discussed in the next 
section and the presented design considers the physics of the 
smart grid in such connectivities. 

In addition to the connectivity structure among the edge 
nodes and the things (i.e., PMUs), a key component of the 
architecture is the communication technology enabling the 
exchange of information among the components. The 
performance of the edge computing platform highly depends 
on the performance of the communication system. The fifth 
generation (5G) communication networks and the 
introduction of massive machine-type communication 
(mMTC) services will enable deployment of large number 
monitoring devices, suitable for PMU deployment. Critical 
services related to reliable operation of the smart grid require 
ultra-reliable low-latency communications (URLLC) [11, 18] 
communication services. 



However, to meet the stringent URLLC requirements of 
these services, current URLLC communication platforms are 
not sufficient and thus the new data acquisition, 
communication and processing architectures are the focus of 
many researchers.  For instance, one of the communication 
network technologies that can improve the performance of the 
network is Software Defined Networking (SDN). SDN is 
defined according to [19] as an emerging network architecture 
where the forwarding (data) plane is physically separated from 
the network control plane, while the latter controls several 
devices. By segregating the control plane from the data plane, 
flexibility is introduced into management for network 
operators. Moreover, R. Vilalta et al., in [20] introduced a 
network of an edge node enabled SDN/NFV technology for 
IoT services with the ability to act as a fog node while 
providing storage, computing and networking services. SDN 
has been proposed as a technology for the communication 
layer of IIoT layer of the EGT [21].  

 The central computing and control layer include the 
control center systems (e.g., SCADA system and central 
utility’s computational servers) as well as the cloud platform 
to support computational and storage needs for less time 
sensitivity and delay tolerant applications. While devices at 
the edge have data storage and processing capabilities, data is 
sent routinely to the central computing and control layer as 
well as the cloud. In the case of state estimation application, 
in addition to the PMU data, the edge layer will send local 
state estimates and early warnings processed in the edge layer 
to the central control systems. The central control layer can 
use such early warnings for identifying critical events that can 
threaten the reliability of the system. In addition, the 
centralized state estimation will be performed in the central 
computing and control layer using more computational 
resources to provide more accurate system-wide state 
estimations using PMU data.  

IV. SITUATIONAL AWARENESS USING EDGE-BASED EGT 
The edge platform is an ideal environment to implement 

DSE. In general, for DSE the smart grid is partitioned into 
several non-overlapping subsections [22]. The DSE is 
performed in individual subsections, where the local 
estimates can be found with the help of the edge nodes. In the 
second stage, the central controller combines the local 
estimates and computes the overall state estimations of the 
whole grid. 

A. Edge Computing Architecture considerations to support 
situational awareness in Smart Grid 
To enhance situational awareness using local state 

estimation and an early warning system, one needs to design 
the edge-computing layer while considering the physics of 
the smart grid. Specifically, in addition to the geographic and 
computational resource considerations, the state dynamics of 
components that are connected to each edge node will affect 
the accuracy of the local state estimates and needs to be 
considered. In this paper, we discuss the architecture of the 
edge layer that connects the PMUs for this purpose based on 
power system considerations. The goal of the edge layer 
design is to identify which PMUs need to connect to which 
edge nodes and how many of the edge nodes are required to 
provide the best local state estimates.  

This problem is formulated as following. We assume that 
the power grid components are equipped with PMUs that are 
connected over a communication network to the edge layer. 
We denote the set of PMUs in the smart grid by 𝒫𝒫 =
{𝑃𝑃1,𝑃𝑃2,𝑃𝑃3, …𝑃𝑃𝑀𝑀}. In the edge layer, we assume there are N 
edge nodes ℰ = {𝐸𝐸1,𝐸𝐸2,𝐸𝐸3, …𝐸𝐸𝑁𝑁} , where each 𝐸𝐸𝑖𝑖  collects 
and processes the time-series from a subset of the PMUs, 
denoted by 𝒫𝒫𝐸𝐸𝑖𝑖 ⊂ 𝓟𝓟. The goal of this problem is to identify 
the subset 𝒫𝒫𝐸𝐸𝑖𝑖  for each 𝐸𝐸𝑖𝑖  such that the 𝐸𝐸𝑖𝑖  can provide the 
best local estimate for the state of the power components 
associated with PMUs in 𝒫𝒫𝐸𝐸𝑖𝑖 . The size of 𝒫𝒫𝐸𝐸𝑖𝑖  for various 
edge nodes are not fixed and need to be identified. Another 
aspect of this problem is to identify the required number of 
edge nodes or 𝑁𝑁. To this end, we assume that the physical 
layer of the system and the PMUs and their locations are 
given and we would like to design the edge layer by 
identifying number of edge nodes and their PMU 
connections.  

In our previous work [23], we have shown that certain 
components can provide more information about the state of 
other components based on the dynamics of the power flow 
in the system. The relations and influences among the 
components have been characterized using various 
techniques in literature such as their correlations, stochastic 
influences and electrical distances [24]. In this paper, we will 
use the relations among the components of the power system 
based on the correlation among their states to design the edge 
layer as following. 

Fig. 1. Layers of the edge-enabled IoT for smart grids. 
 



Designing the architecture of the edge layer must include 
two factors: 1) the members of 𝒫𝒫𝐸𝐸𝑖𝑖  have to be geographically 
close to the position of the edge node 𝐸𝐸𝑖𝑖, and 2) the members 
of 𝒫𝒫𝐸𝐸𝑖𝑖  should have strong correlation among themselves. The 
first one ensures practical feasibility for connecting the PMUs 
in 𝒫𝒫𝐸𝐸𝑖𝑖  to the edge node 𝐸𝐸𝑖𝑖  and the second one ensures that all 
the buses under the supervision of each edge node have 
correlated power dynamics so that state of a component can 
be estimated using other members of 𝒫𝒫𝐸𝐸𝑖𝑖 . Therefore, we can 
formulate the design of the edge architecture as an 
optimization problem.  

 
We denoted the geographical distance from the edge 

node to PMU 𝑘𝑘𝑖𝑖 ∈ 𝒫𝒫𝐸𝐸𝑖𝑖  by 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖  ). We put a threshold limit 
for 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖  )  denoted by 𝐷𝐷𝑡𝑡ℎ , otherwise, it would not be 
practically possible to connect the selected PMU 𝑘𝑘𝑖𝑖 ∈ 𝒫𝒫𝐸𝐸𝑖𝑖 to 
edge node 𝐸𝐸𝑖𝑖 .  We denoted the correlations among the 
members of  𝒫𝒫𝐸𝐸𝑖𝑖  by 𝐶𝐶(𝑘𝑘𝑖𝑖 , 𝑙𝑙𝑖𝑖  ),  where 𝑘𝑘𝑖𝑖 ,   𝑙𝑙𝑖𝑖 ∈ 𝒫𝒫𝐸𝐸𝑖𝑖 . As 
discussed earlier, we want to minimize 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖  )  while 
maximizing 𝐶𝐶(𝑘𝑘𝑖𝑖 , 𝑙𝑙𝑖𝑖  ) . Therefore, we can write the edge 
layer design as a constrained optimization problem as 
follows: 

 

𝑎𝑎𝑎𝑎𝑎𝑎min
𝒫𝒫𝐸𝐸𝑖𝑖

�� � 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖) − 𝜆𝜆
𝑘𝑘𝑖𝑖∈𝒫𝒫𝐸𝐸𝑖𝑖
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𝑠𝑠. 𝑡𝑡.𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖) ≤  𝐷𝐷𝑡𝑡ℎ . 

 
For the faster convergence with an acceptable level of 

accuracy, we consider solving the above optimization 
problem with a heuristic approach instead of the straight 
forward solution. In our approach, we assume that the number 
of edge nodes 𝑁𝑁 and their positions are given and fixed. 
Variable 𝑁𝑁 and their positions are other parameters that can 
be optimized but; however, in this work, we assume 𝑁𝑁 = 4 
and the position of the edge nodes are given over the system 
as shown in the example in Fig. 2. We, initialize the set 𝒫𝒫𝐸𝐸𝑖𝑖  
based on the distance from each PMU from the edge node, 
i.e.  𝑘𝑘′ ∈ 𝒫𝒫𝐸𝐸𝑖𝑖  iff 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘′) <  𝐷𝐷�𝐸𝐸𝑗𝑗 , 𝑘𝑘′�,  where, 𝑖𝑖 ≠ 𝑗𝑗.  We 
consider the constraint 𝐷𝐷(𝐸𝐸𝑖𝑖 , 𝑘𝑘𝑖𝑖) ≤  𝐷𝐷𝑡𝑡ℎ  for ensuring 
practical implementation in initializing the 𝒫𝒫𝐸𝐸𝑖𝑖 . In each 
iteration of the optimization process 𝒫𝒫𝐸𝐸𝑖𝑖  is updated by 
maximizing the correlation among all 𝑘𝑘𝑖𝑖 ∈ 𝒫𝒫𝐸𝐸𝑖𝑖 ,∀ 𝑖𝑖 , with 
data. If 𝒫𝒫𝐸𝐸𝑖𝑖  does not significantly updates within certain 
number of iterations for all  ∀ 𝑖𝑖 ,  the partitioning will be 
finalized.  
 

B. Localized PMU Event Detection based on Edge-enabled 
EGT  
Using the proposed architecture, in this section we 

present an example of a data-driven early warning system for 
detecting anomalies in smart grids. For the implementation of 
this method, we consider the data-stream from each of the 
PMUs as a time-series. However, the whole set of PMU data 
under any subsection can be modeled as a multivariate time 
series. To demonstrate the application of DSE over the edge-
enabled EGT, we focus on the event of line tripping in an area 

and the state estimation that can help generate early warning 
for that based on the PMU time-series locally.  

 
Fig 2: Simulation schematic of event detection based on 

Edge-enabled EGT over IEEE 118 bus system. 
 
In our simulation, we have considered that the grid is 

fully equipped with PMUs, therefore, we have PMUs in all 
the buses. Fig. 2, represents the schematics of the physical 
structure of the IEEE 118 bus system. We assume a PMU at 
every node of this figure, which they represent the buses of 
the system. The black nodes represent the location of the four 
edge nodes. We have used the optimization method in the 
previous section to identify the group of PMUs connected to 
the four edges. The groups of PMUs for each edge node are 
depicted with different colors. Note that in this test system we 
only assumed four edge nodes for demonstration purposes; 
however, for real system with large geographical expansion 
the number of edge nodes will be higher. 

 
Although PMUs provide the measurement of bus voltage 

phasor, injected current phasor and the instantaneous 
frequency, here in our algorithm, we only used the voltage 
angles from all the buses. We denote the voltage angle time-
series from bus number, 𝑏𝑏 as 𝜃𝜃𝑏𝑏(t). At time instant 𝑡𝑡, all the 
PMU data from the connected PMUs to the edge node 𝐸𝐸𝑖𝑖 
comprises the vector, 𝜽𝜽(𝑡𝑡) = [𝜃𝜃1(t),𝜃𝜃2(t), … ,𝜃𝜃𝑛𝑛(t)]𝑇𝑇 , 
where 𝑛𝑛 is the cardinality of set 𝒫𝒫𝐸𝐸𝑖𝑖 . However, all the voltage 
angle PMU time series at edge node 𝐸𝐸𝑖𝑖  constitutes the 
multivariate time series, 𝜽𝜽(𝑡𝑡) . In our experiment, the 
multivariate time series have been obtained from the power 
flow solution in MATPOWER 6.0 [25] according to the hour-
long load profiles from NYISO [26]. Since NYISO  has load 
profiles for only 11 regions, synthetic load profiles have been 
created for 91 load buses of IEEE 118 system according to 
[27]. The measurements have been recorded at a sampling 
rate of 0.033𝐻𝐻𝐻𝐻 and an SNR of 50𝑑𝑑𝑑𝑑. 

 
In this work, we propose a simple real-time method to 

detect and locate the anomalies in smart grids using the 
system states obtained from DSE using PMUs connected to 
the edge nodes. As an example of anomalies in smart grids in 
this paper, we present how a single line failure can be 
detected and its location can be identified locally at the 
respective edge node from the PMU time-series if the PMUs 
are connected to the right edge node.  Here, we have 
considered the tripping of the Branch#136, which is the 
transmission line connecting BUS#85 and BUS#89 in the 
IEEE 118 bus system. According to our edge-layer 
architecture discussed in the previous subsection, both the 



PMUs associated with BUS#85 and BUS#89 are connected 
to the edge node, 𝐸𝐸4. Our goal is to detect and locate this line 
trip locally at the edge node, 𝐸𝐸4 only with the time series of 
the PMUs connected to 𝐸𝐸4.   

 
In Fig. 3, we observe the voltage angle signals from some 

of the PMUs connected to the edge node 𝐸𝐸4 to understand the 
effect of the line trip. As the effect of line trip at 𝑡𝑡 = 0.5 hour 
(12:30 am), the value of the normalized voltage angle drops 
abruptly from 0.78 to  0.65 at the PMU at BUS#85, which is 
connected to the tripped branch. Similar change 
(0.13 decrease) occurs at the PMU at BUS#84, which is 
geographically close to BUS#85. A sharp decrease has also 
been observed at the PMU at BUS#78 but the magnitude of 
the decrease is small compared to the previous two. Although 
BUS#89 was connected to the tripped line, the effect is not 
intelligible from the time series of that PMU. Also, the 
geographically distant PMUs from the tripped branch do not 
show significant effects. From the above case study, it is clear 
that the analysis of the multivariate time-series at the edge 
node 𝐸𝐸4 can detect and find the location of the failure and can 
provide early warning locally before central state estimation 
at the central controller and with the help of the cloud.  

 
Fig. 3: Examples of the effect of a line trip on some of the 

PMU time series connected to the edge node 𝐸𝐸4.  
  

Several techniques can be applied to detect the sharp 
changes in time-series to provide warning in case of such 
scenarios. A simple method is the linear predictive filter 
similar to [28], [29]. In our work, we have applied linear 
predictive filtering to the multivariate voltage angle time-
series. The one-step-ahead predicted value at time 𝑡𝑡 is given 
by: 

𝜽𝜽�(𝑡𝑡|𝑡𝑡 − 1) = �𝑎𝑎𝑘𝑘𝜽𝜽�(𝑡𝑡 − 𝑘𝑘)
𝑝𝑝

𝑘𝑘=1

 

When the difference between predicted vector at time 𝑡𝑡, 
𝜽𝜽�(𝑡𝑡|𝑡𝑡 − 1)  and the actual vector obtained from the 
measurement 𝜽𝜽(𝑡𝑡) exceeds a certain threshold, (i.e.�𝜽𝜽(𝑡𝑡) −
𝜽𝜽�(𝑡𝑡|𝑡𝑡 − 1)�

2
≥ 𝜖𝜖), the edge node generates alarms for an 

anomaly and send them to the central controller. In our 
simulation, we consider 𝑝𝑝 = 2, 𝑎𝑎1 = 0.8  and 𝑎𝑎2 = 0.2 . 
Therefore,  𝜽𝜽�(𝑡𝑡|𝑡𝑡 − 1) = 0.8 𝜽𝜽�(𝑡𝑡 − 1) + 0.2 𝜽𝜽�(𝑡𝑡 − 2) . We 
empirically set 𝜖𝜖 to be 0.1. In our simulation, we showed that 
a single line trip, for example, tripping of the Branch # 136 
(transmission line connecting BUS # 85 and BUS # 89) can 
be detected from the multivariate voltage angle time-series 
𝜽𝜽(𝑡𝑡) from all the PMUs connected to the edge node 𝐸𝐸4. In 

Fig. 4, only the actual PMU signal from PMU#85, its one-
step-ahead predicted version 𝜃𝜃�85(𝑡𝑡|𝑡𝑡 − 1)  and their 
difference signal are shown for better visualization; however, 
in our algorithm, we have used the whole multivariate time-
series 𝜽𝜽(𝑡𝑡), its one-step-ahead predicted version 𝜽𝜽�(𝑡𝑡|𝑡𝑡 − 1) 
and the 𝑙𝑙2 norm of their difference vector for detecting and 
locating a single line trip event at edge node 𝐸𝐸4. From Fig. 4, 
we can observe, a sudden change in the value of the voltage 
angle, at time 𝑡𝑡 =  0.5 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (12:30 am) due to the tripping 
of the Branch # 136. Our method can detect this phenomenon 
and raised the alarm. The same type of method can be used to 
provide an early warning at the edge node in case of other 
similar physical failures and certain types of cyber-attacks.       

 
Fig. 4: The alarm for anomaly. Only one PMU data has 

been shown for better visualization.  
 
For determining the location of the attack, we have to 

find at which PMU the difference between the predicted 
value and the actual value is the largest when the alarm is 
raised. Let, 𝑡𝑡𝑎𝑎 be the time instant when the alarm is set to 1 
(indicating the raised alarm). We find the location of the 
failure by determining the component of the vector 𝜽𝜽(𝑡𝑡𝑎𝑎) −
𝜽𝜽�(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1) with the largest magnitude.  

 
Fig. 5: 𝜃𝜃𝑏𝑏(𝑡𝑡𝑎𝑎) − 𝜃𝜃�𝑏𝑏(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1) for all the PMUs 

connected to edge node 𝐸𝐸4. 
 
If in PMU number 𝑏𝑏, the difference is the largest, then 

𝜃𝜃𝑏𝑏(𝑡𝑡𝑎𝑎) − 𝜃𝜃�𝑏𝑏(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1)  is the component with maximum 
magnitude of the vector 𝜽𝜽(𝑡𝑡𝑎𝑎) − 𝜽𝜽�(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1).  Therefore, 
we have to find such 𝑏𝑏 that,  

�𝜃𝜃𝑏𝑏(𝑡𝑡𝑎𝑎) − 𝜃𝜃�𝑏𝑏(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1)� =  �𝜽𝜽(𝑡𝑡𝑎𝑎) − 𝜽𝜽�(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1)�
∞

 
 
For our simulation, in Fig. 5 the values of �𝜃𝜃𝑏𝑏(𝑡𝑡𝑎𝑎) −

𝜃𝜃�𝑏𝑏(𝑡𝑡𝑎𝑎|𝑡𝑡𝑎𝑎 − 1)�,∀ 𝑏𝑏 have been presented in the bar diagram. 
It is observed that the values in the geographically adjacent 
PMUs of the tripped line (BUS#84-BUS#87) are higher than 
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the values in all other buses. In fact, the maximum is for 
BUS#85, which is connected to the tripped line.  
 

V. CONCLUSIONS 
Smart grids, as examples of critical CPSs, are 

incorporating new technologies to enhance their operation 
and reliability. The application of cloud and edge computing 
in smart grids have been discussed in literature; however, 
their application in support of critical and time-sensitive 
operations has been limited. The distributed and localized 
communication, storage and processing capabilities of edge 
computing provides new opportunities for enhancing smart 
grid operations such as situational awareness. In this paper, 
we discussed an edge-enabled electric-grid of things that can 
provide a great platform for providing DSE.  We specifically 
focused on the network of the PMUs as an example of the 
industrial internet of things in smart grids and discussed the 
edge-computing platform architecture to enable data 
analytics for DSE using the PMU time-series. We discussed 
that it is important to consider the physics of the smart grid in 
designing the edge-computing layer and we considered the 
correlation among time-series of the PMUs as an indicator of 
power dynamics interactions among smart grid components. 
We then presented a data-driven method for detecting power 
line trips and detecting their location using the PMU data and 
the designed physics-aware edge-computing platform. We 
showed that using the edge platform, system could generate 
localized early warnings for events in the system to enhance 
the reliability of the smart grid. 
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